Course Information

Course Numbers

This section has been prepared to give you a listing and description of the approved graduate level courses at the Missouri University of Science and Technology. Courses listed are those approved at the time this publication went to press. Changes are made at regular intervals. Electronic catalog descriptions, which are updated during the academic year, are available on the Web at: http://registrar.mst.edu/cataloginfo/cataloginfo.html or on Joe'sS. This will enable you to keep abreast of new course additions. For current information on when courses are available, consult the campus schedule of classes available from the Registrar's Office, 103 Parker Hall.

0-99 Courses normally taken by freshman and sophomores. May not be used as any part of a graduate degree program.

100-199 Courses normally taken by upper-class undergraduate students. May not be used as any part of a graduate degree program.

200-299 Upper-class undergraduates and restricted graduate courses. Courses so numbered do not give graduate credit for an advanced degree in the field of the department offering the course.

300-399 Upper-class undergraduates and graduate students. Commonly approved for graduate programs only when the student is regularly enrolled in a graduate school and then only if the course fits the purpose of the degree program.

400-499 Graduate courses and research. Undergraduate and postbaccalaureate students are not normally eligible to enroll in 400-level courses.

Course Information

The number in parentheses following the name of the course indicates the number of credit hours given for successfully completing the course. It also reflects the section type; for example, (LEC 3.0) designates a lecture course of three hours credit; (LAB 1.0) designates a laboratory course of one-hour credit and (IND 0.0-15.0) designates independent study or research with variable hours. A lecture credit hour is usually the credit granted for satisfactorily passing a course of approximately 15 classroom hours. A laboratory course of one-hour credit would normally meet three classroom hours per week for 15 weeks.

Three credit hour courses normally meet 50 minutes three times per week, or 75 minutes twice a week, for 15 weeks. The time in class is the same in each case. If you have two classes in succession, there should be at least 10 minutes between classes. Classes meeting Monday-Wednesday-Friday will normally begin on the hour. Classes meeting Tuesday-Thursday will normally alternate between the hour and half hour, beginning at 8:00 a.m. In addition, there is an Academic Free hour 12:00-1:00 on Monday, Wednesday, and Friday.

Students must have completed the stated prerequisite(s) for the course for admission to the course or obtain the 'Consent of the Instructor' of the course.
Aerospace Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

307 Vibrations I (LEC 3.0) Equations of motion, free and forced vibration of single degree of freedom systems. Natural frequencies, resonance, modes of vibration and energy dissipation are studied. The vibration of continuous systems is introduced. Prerequisites: Mc Eng 211 and 213, or Ae Eng 213 and Math 204. (Co-listed with Mc Eng 307, E Mech 361)

309 Engineering Acoustics I (LEC 3.0) Introduction to acoustical theory and measurement with emphasis on mechanical and aerospace engineering applications. Plane and spherical wave propagation, resonators and filters, absorption, room acoustics, human response to noise, noise legislation, noise control. Use of common instrumentation in several projects. Prerequisites: Mc Eng 211 and 213, or Ae Eng 213 & Math 204. (Co-listed with Mc Eng 309)

311 Introduction To Composite Materials & Structures (LEC 3.0) Introduction to fiber-reinforced composite materials and structures with emphasis on analysis and design. Composite micromechanics, lamination theory and failure criteria. Design procedures for structures made of composite materials. An overview of fabrication and experimental characterization. Prerequisite: IDE 110. (Co-listed with Eng Mech 381 and Mech Eng 382)

313 Intermediate Dynamics Of Mechanical And Aerospace Systems (LEC 3.0) Principles of dynamics are applied to problems in the design of mechanical and aerospace systems; basic concepts in kinematics and dynamics; dynamics of systems of particles; dynamics of rigid bodies, three-dimensional effects in machine elements; dynamic stability, theory and applications; methods of analytical dynamics. Prerequisite: Mc Eng 213 or Ae Eng 213. (Co-listed with Mc Eng 313)

314 Spaceflight Mechanics (LEC 3.0) Further topics in orbital mechanics. Time equations, Lambert's problem, patched-conic method, orbital maneuvers, orbit determination, orbit design, re-entry problem. Prerequisite: Ae Eng 213.

315 Concurrent Engineering I (LEC 3.0) Students will be introduced to the concurrent engineering approach to product development. They will learn to set up quantitative requirements and then use a quantitative rating process to identify the critical requirements relating to the desired product. The interaction between design, manufacturing, assembly, cost, and supportability will be covered. The students will form teams and practice the concurrent engineering process for simple products.

316 Concurrent Engineering II (LAB 3.0) Students will form groups and then using the electronic data based approach apply the concurrent engineering process to develop products. Areas to be covered are the customer, design, manufacturing, assembly, cost and supportability. Prerequisite: Ae Eng 315 or Mc Eng 315. (Co-listed with Mc Eng 316)

319 Advanced Thermodynamics (LEC 3.0) After a short review of classical thermodynamics, the elements of chemical reactions, chemical equilibrium, statistical thermodynamics, and the basic concepts of kinetic theory are presented. Prerequisite: Ae Eng 233. (Co-listed with Mc Eng 319)

320 Advanced Mechanics of Materials (LEC 3.0) Comprehensive insight into mechanics of materials. Topics to include: theories of failure, torsion of noncircular sections, shear flow and shear center, unsymmetric bending, bending of curved members, beams on elastic foundation and pressurization of thick walled cylinders. Prerequisites: IDE 110, Math 204. (Co-listed with Mech Eng 320)

321 Aerodynamics Cad Design (LAB 3.0) Aircraft fuselages, wings, and fuselage-wing configurations will be constructed with a 3D CAD package, UNIGRAPHICS. These configurations will then be analyzed with an aerodynamics paneling program. Emphasis will be placed on the designing of these shapes for maximizing the aerodynamic performance. Prerequisite: Ae Eng 231.

322 Introduction To Solid Mechanics (LEC 3.0) Review of basic concepts in continuum mechanics. Finite elasticity: some universal solutions for isotropic materials, application of special mechanical models. Linear elasticity: compatibility, stress functions, superposition, special examples such as extension, torsion, bending, and plane problems. Elements of plasticity. Prerequisite: E Mech 311. (Co-listed with E Mech 322, Mc Eng 322)

325 Intermediate Heat Transfer (LEC 3.0) Analytical study of conduction; theory of thermal radiation and applications; energy and momentum equations in convective heat transfer and review of empirical relations. Current topics are included. Prerequisite: Mc Eng 225. (Co-listed with Mc Eng 325)

327 Combustion Processes (LEC 3.0) Application of chemical, thermodynamic, and gas dynamic principles to the combustion of solid, liquid, and gaseous fuels. Includes stoichiometry, thermochemistry, reaction mechanism, reaction velocity, temperature levels, and combustion waves. Prerequisite: Mc Eng 221. (Co-listed with Mc Eng 327)

329 Smart Materials And Sensors (LEC 2.0 and LAB 1.0) Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multi-disciplinary topics include characterization, performance, and fabrication of composite
structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior standing and Math 204. (Co-listed with Mc Eng, E Mech, El Eng 329 and Cv Eng 318)

331 Thermofluid Mechanics II (LEC 3.0) Derivation of Navier-Stokes equations, exact solutions of some simple flows. Superposition methods for inviscid flows. Intermediate treatment of boundary layer theory, and gas dynamics. Introduction to turbulence and kinetic theory. Prerequisite: Mc Eng 231 or Ae Eng 231. (Co-listed with Mc Eng 331)

334 Stability Of Engineering Structures (LEC 3.0) Solution of stability problems with applications to columns, plates and shell structures. Torsional and lateral buckling of columns. Buckling under high temperatures. Effect of imperfections introduced by a technological process on stability. Design issues related to stability requirements. Prerequisites: IDE 110; Math 204; and IDE 150 or Mech Eng 160 or Aero Eng 160. (Co-listed with Mech Eng 334 and Eng Mech 334)

335 Aerospace Propulsion Systems (LEC 3.0) Study of atmospheric and space propulsion systems with emphasis on topics of particular current interest. Mission analysis in space as it affects the propulsion system. Power generation in space including direct and indirect energy conversion schemes. Prerequisite: Ae Eng 235.

336 Fracture Mechanics (LEC 3.0) Linear elastic and plastic mathematical models for stresses around cracks; concept of stress intensity; strain energy release rates; correlation of models with experiment; determination of plane stress and plane strain parameters; application to design. Prerequisite: IDE 110. (Co-listed with Mech Eng 336, Eng Mech 336)

339 Computational Fluid Dynamics (LEC 3.0) Introduction to the numerical solution of the Navier-Stokes equations, by finite difference methods, in both stream function-vorticity and primitive variable formulations. Course format emphasizes student development of complete computer programs utilizing a variety of solution methods. Prerequisites: Comp Sci 53 or 73 or 74; one course in fluid mechanics. (Co-listed with Mc Eng 339)

341 Experimental Stress Analysis I (LEC 2.0 and LAB 1.0) Acquaints the student with some techniques of experimental stress analysis. Principal stresses, strain to stress conversion, mechanical and optical strain gages, electrical resistance strain gages, transducers, and brittle coatings. Prerequisite: IDE 110. (Co-listed with Mech Eng 341, Eng Mech 341)

342 Experimental Stress Analysis II (LEC 2.0 and LAB 1.0) Acquaints the student with some techniques of experimental stress analysis. Topics include principal stresses, strain to stress conversion, transmission and reflection photoelastic methods, Moire fringe methods, and analogies. Prerequisites: IDE 110, Eng Mech 321. (Co-listed with Mech Eng 342, Eng Mech 342)

343 Photographic Systems For Engineering Applications (LEC 2.0 and LAB 1.0) Study of photographic techniques applied to engineering uses including observations of events, recording and storage of data, and communication and dissemination of information. Both conventional and special photo-optical systems are covered. Prerequisite: Senior standing. (Co-listed with Mc Eng 343)

344 Fatigue Analysis (LEC 3.0) The mechanism of fatigue, fatigue strength of metals, fracture mechanics, influence of stress conditions on fatigue strength, stress concentrations, surface treatment effects, corrosion fatigue and fretting corrosion, fatigue of joints components and structures, design to prevent fatigue. Prerequisite: IDE 110. (Co-listed with Eng Mech 337, Mech Eng 338)

349 Robotic Manipulators & Mechanisms (LEC 2.0 and LAB 1.0) Overview of industrial applications, manipulator systems and geometry. Manipulator kinematics; hand location, velocity and acceleration. Basic formulation of manipulator dynamics and control. Introduction to machine vision. Projects include robot programming, vision-aided inspection and guidance, and system integration. Prerequisites: Cmp Sc 73, Ae Eng 213. (Co-listed with Mc Eng 349)

350 Integrated Product Development (LEC 2.0 and LAB 1.0) Students in design teams will simulate the industrial concurrent engineering development process. Areas covered will be design, manufacturing, assembly, cost, and product support. Using a 3-D solid modeling program, students will design, analyze, and send the data base to the automated machine shop where the parts will be manufactured. The parts will then be assembled, tested and analyzed for their performance. Prerequisites: Ae Eng 251 or Mc Eng 208 for Design; Mc Eng 213 for Assembly; Accompanied or preceded by Mc Eng 353 for Manufacturing; Eng Mg 375 or 385 for Cost/Product Support.

351 Intermediate Aerospace Structures (LEC 3.0) Discussion of the finite element method for static and dynamic analysis of complex aerospace structures. Solution of basic problems using established finite element computer programs. Prerequisite: Ae Eng 253 or Mc Eng 212. (Co-listed with Mc Eng 351)

352 Finite Element Approximation I--An Introduction (LEC 3.0) Variational statement of a problem. Galerkin Approximation, finite element basis functions and calculations, element assembly, solution of equations boundary conditions, interpretation of the approximation solution,
development of a finite element program, two-dimensional problems. Prerequisite: Math 204. (Co-listed with Mc Eng 312, E Mech 307)

353 Aeroelasticity (LEC 3.0) Study of phenomena involving interactions among inertial, aerodynamic, and elastic forces and their influence of these interactions on aircraft and space vehicle design. Some aeroelastic phenomena are: divergence, control effectiveness, control reversal, flutter, buffeting, dynamic response to rapidly applied loads, aeroelastic effects on load distribution, and static and dynamic stability. Prerequisites: Ae Eng 251 and 271.

360 Probabilistic Engineering Design (LEC 3.0) The course deals with uncertainties in engineering analysis and design at three levels - uncertainty modeling, uncertainty analysis, and design under uncertainty. It covers physics-based reliability analysis and reliability-based design, robustness assessment and robust design, their integration with design simulations, and their engineering applications. Prerequisite: Mech Eng 208 or Aero Eng 261. (Co-listed with Mech Eng 360)

361 Flight Dynamics-Stability And Control (LEC 3.0) Review of static stability, dynamic equations of motion, linearized solutions, classical control design and analysis techniques, introduction to modern control. Prerequisite: Ae Eng 261.

362 Experimental Vibration Analysis (LEC 2.0 and LAB 1.0) Methods for measuring and analyzing motion and strain response of dynamically excited structures. Includes frequency-response testing of elementary beam, torsion bar, plate and shell structures. Experiments on the effectiveness of isolators and dynamic absorbers. Prerequisite: E Mech 361 or Mc Eng 307 or Ae Eng 307. (Co-listed with Mc Eng 362, E Mech 362)

369 Introduction To Hypersonic Flow (LEC 3.0) A study of the basic principles of hypersonic flow. Inviscid and viscous hypersonic flow. Application of numerical methods. High temperature flow. Consideration of real gas and rarefied flow. Applications in aero-dynamic heating and atmospheric entry. Prerequisite: Ae Eng 271 or Mc Eng or Ae Eng 331.

377 Principles Of Engineering Materials (LEC 3.0) Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Ch Eng 347, Physics 377, Mt Eng 377, Cr Eng 377)

378 Mechatronics (LEC 2.0 and LAB 1.0) This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 279 or equivalent. (Co-listed with Mech Eng 378, Elec Eng 378 and Comp Eng 378)

380 Spacecraft Design I (LEC 3.0) Fundamentals of spacecraft design. Systems engineering, subsystem analysis and design. Gantt charts, organizational charts. Oral presentations and technical documentation. Term project to involve design and development of actual flight hardware, continuing into Spacecraft Design II. Prerequisites: Ae Eng 251, 261, and 271 for Ae Eng majors; consent of instructor for non-Ae Eng majors.

381 Mechanical And Aerospace Control Systems (LEC 3.0) Synthesis of mechanical and aerospace systems to perform specific control functions. Response and stability are studied. Singular value analysis for stability margins is introduced. Prerequisite: Mc Eng 279 or Ae Eng 361. (Co-listed with Mc Eng 381)

382 Spacecraft Design II (LAB 3.0) As a continuation of Ae Eng 380, detailed spacecraft design is performed, leading to procurement of components. As schedules permit, spacecraft fabrication and test commence. Development of labs to facilitate spacecraft test, operation, and data analysis continues. Prerequisites: Ae Eng 235, 253, and 380 for Ae Eng majors; consent of instructor for non-Ae Eng majors.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title. (Co-listed with Mc Eng 401)

403 Advanced Dynamics Of Machinery (LEC 3.0) Current problems in machine design are tested using methods of analytical mechanics; gyroscopic phenomena; the calculus of variations; stability of systems; to include approximate techniques. Prerequisite: Ae Eng 313 or Mc Eng 313.

407 Advanced Vibrations (LEC 3.0) Advanced treatment of discrete and continuous vibratory systems. Extensive use is made of matrix methods and operator notation. Special topics include:
transmission matrices, relative coordinates, time dependent boundary conditions, approximate techniques for linear systems, nonlinear systems and random excitations. Prerequisite: Mc Eng or Ae Eng 307 or E Mech 361. (Co-listed with Mc Eng 407)

408 Finite Element Approximation II Second Course (LEC 3.0) Continuation of Finite Element Approximation I-An Introduction: element selection and interpolation estimates, Lagrange, Hermite, and Isoparametric elements; mixed, hybrid, penalty and boundary elements; eigenvalue and time-dependent problems; three-dimensional and nonlinear problems. Prerequisite: E Mech 307 or Mc Eng 312 or Ae Eng 352. (Co-listed with E Mech 408, Mc Eng 408)

409 Engineering Acoustics II (LEC 3.0) Expanded treatment of the theory of sound generation and propagation. The acoustic source, dipole, and quadrupole. Noise sources due to vibration and fluid flow. Sound propagation in the atmosphere. The transmission of sound in ducts, propeller, fan, and jet noise. Prerequisite: Mc Eng or Ae Eng 309. (Co-listed with Mc Eng 409)

410 Seminar (LEC 0.0-1.0) Discussion of current topics. (Co-listed with Mc Eng 410 and E Mech 410)

413 Advanced Aerospace Mechanics (LEC 3.0) Current problems in aerospace dynamics are treated using methods of analytical mechanics; gyroscopic phenomena; the calculus of variations, stability of systems, to include approximate techniques. Prerequisite: Mc Eng or Ae Eng 313. (Co-listed with Mc Eng 413)

419 Microscopic Thermodynamics (LEC 3.0) A microscopic treatment of thermodynamic concepts using the statistical approach. The kinetic theory of an ideal gas including transport phenomena. A comprehensive introduction to Maxwell-Boltzmann and quantum statistics including the relationship between particular functions and thermodynamic properties. An introduction to the ensemble method of Gibbs for systems of dependent particles. Prerequisite: Mc Eng or Ae Eng 319. (Co-listed with Mc Eng 419)

423 Viscous Fluid Flow (LEC 3.0) Fundamentals of viscous fluids for incompressible and compressible flows governed by Navier-Stokes equations; exact, approximate, and numerical solutions for steady and unsteady laminar flows; stability, transition, and turbulence, CFD simulations of internal and external flows. Prerequisite: Mc Eng or Ae Eng 331. (Co-listed with Mc Eng 423)

425 Heat Transfer By Conduction (LEC 3.0) A study of conduction of heat transfer in solids by analytical and other methods. Prerequisite: Mc Eng or Ae Eng 325. (Co-listed with Mc Eng 425)

427 Heat Transfer By Convection (LEC 3.0) An analytical study of convective heat transfer in laminar and turbulent flows; forced convection, natural convection, and mixed convection; combined heat and mass transfer; heat transfer with change of phase; instability of laminar flow; current topics in convection. Prerequisite: Mc Eng or Ae Eng 325. (Co-listed with Mc Eng 427)

429 Heat Transfer By Radiation (LEC 3.0) A study of the nature of thermal radiation; implications from electromagnetic theory; radiative characteristics of surfaces; enclosures; configuration factors; radiosity; specular and diffuse reflection; transfer in absorbing, emitting and scattering media; combined radiation conduction and convection; experimental methods. Prerequisite: Mc Eng or Ae Eng 325. (Co-listed with Mc Eng 429)

431 Gas Dynamics I (LEC 3.0) A critical analysis of the phenomena governing the flow of a compressible fluid; introduction to flow in two and three dimensions; Prandtl-Meyer expansions; small perturbations in subsonic and supersonic flows; method of characteristics. Prerequisite: Mc Eng or Ae Eng 331. (Co-listed with Mc Eng 431)

433 Gas Dynamics II (LEC 3.0) A continued study of compressible fluid flow phenomena; bodies of revolution and slender body theory; transonic flow; unsteady one-dimensional motion including small amplitude waves. Continuous flow, and shock waves; the shock tube; shockwave boundary layer interactions. Prerequisite: Mc Eng or Ae Eng 431. (Co-listed with Mc Eng 433)

435 Turbulence In Fluid Flow (LEC 3.0) Fundamentals of statistical theory of turbulence; turbulence modeling for transport processes of heat, mass, and momentum; closure schemes for Reynolds-averaged Navier-Stokes equations in free turbulence and wall turbulence; CFD simulations of turbulent flows. Prerequisite: Mc Eng or Ae Eng 331. (Co-listed with Mc Eng 435 and Ch Eng 435)

436 Rarefied Gas Dynamics (LEC 3.0) The kinetic theory of gases is applied to problems of aerodynamic interest in a low density medium. The theory of free molecular flow is developed and applied to force and moment calculations on various bodies. The Boltzmann equation is solved for free molecular flow in the satellite wake and surface flow. Prerequisite: Mc Eng or Ae Eng 331.

437 Physical Gas Dynamics I (LEC 3.0) Features of high temperature gas flows including the development of the necessary background from kinetic theory, statistical mechanics, chemical thermodynamics and chemical kinetics. Equilibrium and Nonequilibrium gas properties and gas flows are included. Prerequisite: Mc Eng or Ae Eng 331. (Co-listed with Mc Eng 437)

439 Physical Gas Dynamics II (LEC 3.0) Features the study of transition regime gas dynamics including the concept of molecular velocity distribution, gas-solid interaction, the Boltzmann equation, Nonequilibrium flow and solutions to specific problems in transition flow. Prerequisite: Mc Eng or Ae Eng 331. (Co-listed with Mc Eng 439)

443 Engineering Magnetohydrodynamics (LEC 3.0) Critical study of magnetohydrodynamic power generation and magnetohydrodynamic propulsion; including the study of ionization processes, gaseous
conduction, fundamental equations of magnetohydrodynamics, exact solutions of magnetohydrodynamic channel flow, one dimensional approximation, boundary layer development and important parameters in magnetohydrodynamics. Prerequisite: Math 322. (Co-listed with Mc Eng 443)

451 Thermal Stresses I (LEC 3.0) A review of heat transfer principles and rigorous formulation of basic thermal stress relations with the solution of some basic practical problems. Prerequisite: Mc Eng 325. (Co-listed with Mc Eng 451)

453 Thermal Stresses II (LEC 3.0) Discussion of the basic phenomena associated with thermal stress, thermal stress fatigue, low cycle fatigue, and thermal shock. Discussion of material selection and elimination of thermal stress by design configuration. Prerequisite: Mc Eng or Ae Eng 451. (Co-listed with Mc Eng 453)

457 Markov Decision Processes (LEC 3.0) Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Comp Eng 457, Mech Eng 447, Eng Mgt 457 and Comp Sci 457)

458 Adaptive Critic Designs (LEC 3.0) Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisite: Elec Eng 368 Neural Networks or equivalent (Computational Intelligence Comp Eng 301) (Co-listed with Comp Eng, Elec Eng, Mech Eng and Sys Eng 458)

479 Analysis And Synthesis Of Mechanical And Aerospace Systems (LEC 3.0) A unified treatment of modern system theory for the Mechanical and Aerospace Engineering Controls Analyst, including analysis and synthesis of linear and nonlinear systems, compensation and optimization of continuous and discrete systems, and theory of adaptivity. Prerequisite: Mc Eng 381 or Ae Eng 381. (Co-listed with Mc Eng 479)

483 Aerosol Mechanics (LEC 3.0) Aerosol (hydrosol) particle motion under the influence of external forces (inertial, gravitational, electrostatic, phoretic, etc.) particle coagulation, deposition, filtration theory applied to clean rooms. Prerequisites: Mc Eng or Ae Eng 331, or Ch Eng 336.

484 Analysis Of Laminated Composite Structures (LEC 3.0) An overview of isotropic beams, plates, and shells. Bending, vibration, and buckling of laminated composite beams and plates: exact and approximate solutions. Development of composite shell theory and simplified solutions. Analysis of composite structures including transverse shear deformation and thermal effects. Prerequisite: E Mech 381 or Mc Eng 382 or Ae Eng 311. (Co-listed with E Mech 484 and Mc Eng 484)

485 Mechanics Of Composite Materials (LEC 3.0) Effective moduli of spherical, cylindrical and lamellar systems. Micromechanics of fiber-matrix interfaces and unidirectional composites. Application of shear lag and other approximate theories to interfaces and composites including fiber pull-out, debonding and matrix cracking. Prerequisite: EMech 381 or Mc Eng 382 or Ae Eng 311. (Co-listed with Mc Eng 485 and E Mech 483)

487 Finite Element Approximation III- Nonlinear Problems (LEC 3.0) Formulation of nonlinear problems, iterative methods, solution of nonlinear problems, cover topics of interest to the class. Prerequisite: E Mech 408 or Mc Eng 408 or Ae Eng 408. (Co-listed with EMech 487 and Mc Eng 487)

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (LEC 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Biological Sciences Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

310 Seminar (RSD 1.0) Presentation of a scientific paper concerned with current topics in biological sciences. Prerequisite: Senior standing.

311 Bioinformatics (LEC 3.0) The course will familiarize students with the application of computational methods to biology, as viewed from both perspectives. It will introduce problems in molecular, structural, morphological, and biodiversity informatics, and will discuss principles, algorithms, and software to address them.
Prerequisites: Bio Sci 110 or 111 and Comp Sci 53/54 or 74/78. (Co-listed with Comp Sci 311)

315 Developmental Biology (LEC 3.0) Study of the patterns of development of the vertebrate embryo, the molecular mechanisms of tissue induction, and interactions among developing tissues. Prerequisites: Bio 115 and Bio 211.

321 Pathogenic Microbiology (LEC 3.0) A study of medically important microorganisms. Students will learn about the properties that enable organisms to cause disease as well as the disease process within the host. Special emphasis will be placed on recent advances in the molecular genetics of host pathogen interaction. Prerequisite: Bio 221 or Cv Eng 261.

322 Pathogenic Microbiology Laboratory (LAB 2.0) An investigation of techniques for the isolation and identification of pathogenic microorganisms. Prerequisite: Preceded or accompanied by Bio 321.

325 Microbiology In Bioengineering (LEC 3.0) General introduction to prokaryotic and eukaryotic microorganisms and viruses. Consideration of various parameters affecting the growth, basic techniques of culture, and industrial applications of microorganisms. Prerequisite: Bio 211.

327 Plant Physiology (LEC 3.0) This course will cover structures and functions of plants from the cellular to the whole plant levels. Topics covered include absorption and transport of water and mineral nutrients, photosynthesis, metabolism of starch and lipids, secondary metabolism, plant stress physiology, and plant hormones. Prerequisites: Bio Sci 111, 110; Bio Sci 118, 119.

328 Nutritional And Medicinal Properties Of Plants (LEC 3.0) A survey of the biochemical and physiological functions of mineral elements, vitamins, and other organic compounds from plants necessary in human nutrition; and an overview of the medicinal derivatives of various plants, their necessary in human nutrition; and an overview of the medicinal derivatives of various plants, their

331 Molecular Genetics (LEC 3.0) A study of the properties and functions of DNA that make this macromolecule unique in the universe. Examples of replication, transcription, translation, repair, and regulation will be examined in viruses, prokaryotes, and eukaryotes. Prerequisites: Bio 231 and Bio 211.

332 Molecular Genetics Laboratory (LAB 2.0) This course provides experience in the use of a variety of DNA manipulation techniques that are common to molecular studies. These include DNA extraction, restriction mapping, Southern blotting, recombinant plasmid construction, DNA sequencing and analysis, and polymerase chain reaction. Prerequisite: Preceded or accompanied by Bio 331.

340 Biomaterials I (LEC 3.0) This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Cer Eng 340, Met Eng 340, Chem Eng 340)

341 Tissue Engineering I (LEC 3.0) The course will introduce senior undergraduate students to the principles and clinical applications of tissue engineering including the use of biomaterials scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. Prerequisite: Senior standing. (Co-listed with MS&E 341)

345 Comparative Chordate Anatomy (LEC 2.0 and LAB 2.0) An integrated, comparative study of chordate structures and systems, with emphasis on evolution, development and function. Includes examination of gross anatomy and histology of selected forms. Prerequisites: Bio Sci 110 or 111, and Bio Sci 115 and 116.

352 Biological Effects Of Radiation (LEC 3.0) Introduction to biological effects of ionizing radiation including mode of induction of mutations, effects on the developing fetus and specific tissues plus therapeutic applications of various types of radiation. Prerequisites: Bio Sci 110 or Bio Sci 111; and Chem 3.

354 Freshwater Ecology (LEC 3.0) The ecology of streams, lakes, and wetlands. The course will cover the physical and chemical characteristics of freshwater environments, the diversity of life in freshwaters, biogeochemical processes, and threats to freshwater systems. Prerequisite: Bio Sci 251.

361 Cell Physiology (LEC 3.0) Consideration of the physiochemical nature of the cell, its relationship with environment, and its metabolic pathways. Prerequisite: Bio 211.

365 Comparative Animal Physiology (LEC 3.0) A comparative study of functional relationships, physiological adaptations, and survival strategies which are observed among various groups of animals as they respond to natural environmental conditions. Emphasis is placed on relating biochemical function and phylogenetic relationships. Prerequisites: Bio 215, Chem 223, and Bio 211 or Chem 361.

370 Toxicology (LEC 3.0) A study of natural and man-made toxins, various possible routes of exposure, absorption, distribution, biotransformation, specific target sites, and mechanisms involved in elicitation of toxic effects, as well as detoxification and excretion. Prerequisites: Bio 211 plus either Bio 215 or 242.

375 Advanced Biology Lab Techniques I (IND 1.0-3.0) Advanced level laboratory designed to acquaint students of cellular and molecular biology with
376 Advanced Biology Lab Techniques II (IND 1.0-3.0) Continued laboratory study of current bioresearch techniques. Further work with miniprojects. Prerequisite: Junior or senior standing in Biological Sciences or related field plus consent of instructor.

381 Immunology (LEC 3.0) A study of the principles of immunology, including biological and biochemical aspects of the immune response, immunochemistry, serology, immunoglobulin and T-cell mediated allergies, tumor and transplantation immunology, autoimmune diseases, and the role of immunity in host defense. Prerequisites: Chem 223 or Chem 363 and Bio 211.

390 Undergraduate Research (IND 1.0-3.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours for graduation credit. Subject and credit to be arranged with the instructor. Prerequisite: Consent of instructor.

391 General Virology (LEC 3.0) An overview of the field of virology, including plant, animal, and bacterial viruses. Discussions will include morphology, classification, virus-host interactions, genetics, clinical and industrial aspects of viruses, and viruses as model systems for basic biological studies. Prerequisites: Bio Sci 110 or 111; Bio Sci 211, 221, Chem 1, 3, 221.

400 Special Problems (IND 0.0-6.0) Graduate problems or readings on specific subjects or projects in the department. Prerequisite: Consent of the instructor.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

402 Problems In Applied And Environmental Biology (LEC 0.0-3.0) Overview of major areas of research in applied biology and environmental science with a focus on interdisciplinary approaches used on UMR campus in ongoing research. Prerequisite: Acceptance to Graduate Program.

410 Graduate Seminar (RSD 0.0-6.0) Presentation and discussion of current topics in Applied and Environmental Biology.

418 Plant Stress Physiology (LEC 3.0) Course covers plant responses to environmental stress. Physiological anatomical, biochemical and molecular responses to both biotic and abiotic stresses. Prerequisites: Bio 211, Bio 218 and 219 and Chem 361.

421 Advanced Microbial Metabolism (LEC 3.0) A survey of the diverse metabolic properties of microorganisms. Course material will emphasize major metabolic pathways and how they relate to microbial diversity and microbial ecology. Prerequisite: Bio 221 or an equivalent course.

422 Biomolecules (LEC 3.0) Demonstration of the principles of modern biochemistry as they relate to the structure and function of the major macromolecules of the cell. An emphasis will be placed on reading and interpreting scientific literature and scientific writing. Prerequisites: Bio 211 and/or Chem 361 or an equivalent course.

440 Biomaterials II (LEC 3.0) This course will introduce graduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. A term paper and oral presentation are required. Prerequisite: Graduate Standing. (Co-listed with MS&E 441)

441 Tissue Engineering II (LEC 3.0) The course will introduce graduate students to the principles and clinical applications of tissue engineering including the use of biomaterials, scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. A related topic term paper and oral presentation are expected. Prerequisite: Graduate standing. (Co-listed with Cer Eng 440, Met Eng 440, Chem Eng 440)

442 Mammalian Physiology (LEC 3.0) Advanced study of the physiology of mammalian organ systems with a focus on membrane biophysics, endocrine control of metabolism, organ interactions, and homeostatic mechanisms. Prerequisites: Bio 211 plus either Bio 215 or Bio 242.

451 Environmental Microbiology (LEC 3.0) Topics to be explored in this course will include but are not limited to microbial growth and metabolic kinetics, life in extreme conditions, biogeochemical cycling, bioremediation of contaminants, waterborne pathogens and environmental biotechnology. Prerequisite: Must be a graduate student.

452 Astrobiology (LEC 3.0) The origins of life on early earth and the possibility of life on extraterrestrial bodies will be explored in this course through lectures and journal article discussions. In addition, the means to study extraterrestrial environments will be considered. Prerequisite: Graduate standing.

454 Advanced Freshwater Ecology (LEC 3.0) The ecology of streams, lakes, and wetlands. The course will cover the physical and chemical characteristics of freshwater environments, the diversity of life in freshwaters, biogeochemical processes, and threats to freshwater systems. Research proposal and additional readings required for graduate credit. Prerequisite: Graduate student standing.

455 Bioremediation (LEC 3.0) During this course, the use of microorganisms and other living organisms for the remediation of contaminated environments...
will be explored along with the techniques necessary for monitoring their activities. Prerequisite: Graduate standing.

461 Advanced Cell Biology (LEC 3.0) Advanced study of the biology of eukaryotic cells, including biomembranes and membrane transport, subcellular organelles, cellular energetics, protein sorting, cytoskeletal elements, cell to cell signalling, regulation of the cell cycle, and tissue organization. Prerequisite: Bio 211 or equivalent.

475 Techniques In Applied And Environmental Biology (LEC 3.0) Students will have the opportunity for hands on experience with the various techniques used in the modern biology laboratory. Techniques will include gene cloning, DNA sequencing, protein purification, growth and development of various model organisms, data acquisition. Prerequisite: Graduate standing.

490 Graduate Research (IND 0.0-15.0) Investigation of an advanced nature leading to the preparation of a thesis or dissertation.

493 Oral Examination (IND 0.0) (Variable) After completion of all other program requirements, oral examinations for on-campus M.S./PH.D students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

Business Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This is designed to give the department an opportunity to test a new course. Variable title.

302 Internship (IND 0.0-6.0) Internship will involve students applying critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student’s background and the setting. Prerequisite: Completed 30 hours toward degree.

305 Accounting Essentials (LEC 1.5) This course is an introduction to the essentials of financial and managerial accounting for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Prerequisite: Senior or Junior standing; 3.0 GPA required.

306 Management and Business Law Essentials (LEC 1.5) This course is an introduction to the essentials of management and business law for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Prerequisite: Senior or Junior Standing; 3.0 GPA required.

307 Marketing and Strategy Essentials (LEC 1.5) This course is an introduction to the essentials of marketing and strategy for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Prerequisite: Senior or Junior Standing; 3.0 GPA required.

308 Operations Management Essentials (LEC 1.5) This course is an introduction to the essentials of operations management for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Prerequisite: Senior or Junior Standing; 3.0 GPA required.

309 Mathematics and Statistics Essentials (LEC 1.5) This course is an introduction to the essentials of mathematics and statistics for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Prerequisite: Senior or Junior Standing; 3.0 GPA required.

311 Business Negotiations (LEC 3.0) The purpose of this course is to understand the practices and processes of negotiation so that you can negotiate successfully in a variety of settings. The course is designed to be relevant to the broad spectrum of negotiation problems faced by managers, consultants, etc. Because almost everyone negotiates all the time, this course is relevant to almost any student. Prerequisite: Upperclassmen or graduate status.

312 Management Information Systems Essentials (LEC 1.5) This course is an introduction to the essentials of management information systems for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Prerequisite: Senior or Junior Standing; 3.0 GPA required.
320 Managerial Accounting (LEC 3.0) Emphasizes internal use of accounting information in establishing plans and objectives, controlling operations, and making decisions involved with management of an enterprise (the determination of costs relevant to a specific purpose such as inventory valuation, control of current operation, or special decisions). Prerequisite: Bus 120.

360 Business Operations (LEC 3.0) This course examines the concepts, processes, and institutions that are fundamental to an understanding of business operations within organizations. Emphasis is on the management and organization of manufacturing and service operations and the application of quantitative methods to the solution of strategic, tactical and operational problems. Prerequisites: Math 12, Stat 211, and Bus 120.

370 Human Resource Management (LEC 3.0) The course examines employee selection, performance appraisal, training and development, compensation, legal issues, and labor relations. Prerequisite: Bus 110.

375 International Business (LEC 3.0) This course will deal with business concepts, analytical processes and philosophical bases for international business operations. Emphasis is on environmental dynamics, multinational business organizations, cultural and economic constraints, unique international business practices and international operations, strategy and policy. Prerequisite: MKT 311 or MKT 407 or Eng Mgt 251.

380 Strategic Management (LEC 3.0) Study of the formulation and implementation of corporate, business and functional strategies designed to achieve organizational objectives. Case studies and research reports may be used extensively. Prerequisites: MKT 311 and FIN 250; Senior standing.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

397 Senior Business Design I (LEC 1.0) In this course, students will become familiar with the principles of entrepreneurship; learn about the basic purpose, content and structure of business plans; and develop business presentation skills through practice. At the end of the semester, student teams will give presentations to a bank in an attempt to secure a loan to run the business the following semester. Prerequisite: Senior Standing.

398 Senior Business Design II (LEC 2.0) In this course, students will be expected to carry out the business plans created in Bus 397. Progress reports are submitted roughly every 3 weeks during the semester. At the end of the semester, students terminate the business organization and profits are donated to a non-profit organization in the team’s name. Prerequisite: Bus 397.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Prerequisite: Admission to the MBA program.

405 Graduate Accounting Essentials (LEC 1.5) This course is an introduction to the essentials of management information systems for running a business. It is designed for students planning to enter the MBA program. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Additional case or report required. Prerequisite: Bachelor Degree.

406 Graduate Management and Business Law Essentials (LEC 1.5) This course is an introduction to the essentials of management information systems for running a business. It is designed for students planning to enter the MBA program. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Additional case or report required. Prerequisite: Bachelor Degree.

408 Graduate Operations Management Essentials (LEC 1.5) This course is an introduction to the essentials of management information systems for running a business. It is designed for students planning to enter the MBA program. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Additional case or report required. Prerequisite: Bachelor Degree.

409 Graduate Mathematics and Statistics Essentials (LEC 1.5) This course is an introduction to the essentials of management information systems for running a business. It is designed for students planning to enter the MBA program. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Additional case or report required. Prerequisite: Bachelor Degree.

412 Graduate Management Information Systems Essentials (LEC 1.5) This course is an introduction to the essentials of management information systems for running a business. It is designed for students planning to enter the MBA program. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Additional case or report required. Prerequisite: Bachelor Degree.

420 Integrated Business Core (LEC 12.0 and LAB 6.0) The MBA core areas of management, marketing, operations, accounting, finance, and human resource are integrated using a case study approach with emphasis on enterprise resource planning software. Coverage includes ethical issues, legal environment, and skills development in negotiations, teambuilding, leadership, and communications. Prerequisite: Admission to the MBA program and completion of all prerequisites for the program.

421 Teambuilding and Leadership (LEC 3.0) As the first course in the MBA program, this class will teach students how to work well in teams and help teams
become effective. Leadership, management, networking, presentation, and workplace social skills will be covered. Prerequisite: Admission into the MBA program.

422 Business Opportunity Analysis (LEC 3.0) This course focuses on opportunity analysis where it deals with company’s external, internal and financial environments. Students actively learn the steps and techniques needed to evaluate company resources and how they match with market opportunities. Prerequisite: Preceded or accompanied by Bus 421.

423 Decision Making (LEC 3.0) Students will learn about the types of decisions that are made by organizations to exploit opportunities or neutralize threats in the environment. Prerequisite: Preceded or accompanied by Bus 421.

424 Implementation (LEC 3.0) This course discusses the actions that may be carried out in implementing business plans and decisions within a business organization. Related knowledge in the fields of accounting and finance is introduced. Prerequisite: Preceded or accompanied by Bus 421.

425 Project Management (LEC 3.0) This course will cover the use of operations, management, and MIS to managing business projects. Prerequisite: Preceded or accompanied by Bus 421.

426 Integration Using Enterprise Resource Planning (LEC 3.0) Students will learn to use enterprise resource planning (ERP) to operate a business more effectively. Emphasis will be on the business use of ERP and the integration of the business organization through use of this powerful software. Prerequisite: Preceded or accompanied by Bus 421.

471 Advanced Business Negotiations (LEC 3.0) The purpose of this course is to understand the practices and processes of negotiation so that you can negotiate successfully in a variety of settings. The course is designed to be relevant to the broad spectrum of negotiation problems faced by managers, consultants, etc. A negotiation project is also required. Prerequisite: Graduate status.

475 Advanced International Business (LEC 3.0) Business concepts, analytical processes and philosophical bases for international business operations. Emphasis is on environmental dynamics, multinational business organizations, cultural and economic constraints, unique international business practices and international operations, strategy and policy. Research project required. Prerequisite: MKT 311 or MKT 407 or Eng Mgt 251.

490 Research (IND 0.0-6.0) The research project will involve students applying research techniques and discipline specific knowledge working on a project designed by the advisor, often working with a business organization. Requires major report and formal presentation to sponsoring organization. Prerequisite: Bus 420.

491 Internship (IND 0.0-6.0) Students apply critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employer. Activities will vary depending on the student’s background and the setting. Requires major report and formal presentation to sponsoring organization. Prerequisite: Bus 420.

499 Practicum (IND 0.0-6.0) This course is similar to the BUS 491 Internship course. The difference is that this course is intended for students who are already employed by an organization for whom they wish to continue working. Prerequisite: Business Core.

Ceramic Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

306 Mechanical Properties Of Ceramics (LEC 3.0 and LAB 1.0) This course will treat the theory and testing practice related to design based on the mechanical properties of ceramics. The course also includes a laboratory consisting of experiments for the characterization of the mechanical properties of ceramics. Prerequisite: IDE 110.

308 Electrical Ceramics (LEC 2.0 and LAB 1.0) The application and design of ceramics for the electrical industry is discussed. Particular emphasis is placed on how ceramic materials are altered to meet the needs of a specific application. The laboratory acquaints the student with measurements which are used for electrical property evaluation. Prerequisite: Cr Eng 284.

315 Organic Additives In Ceramic Processing (LEC 2.0) Basic chemistry, structure and properties or organic additives used in the ceramics industry; solvents, binders, plasticizers, dispersants. Use of organic additives in ceramic processing. Prerequisites: Cr Eng 203 and 231.

331 Ceramic Processing (LEC 3.0) Powder, colloidal and sol-gel processing, forming methods, drying, sintering and grain growth. Relation of processing steps to densification and microstructure development. Prerequisite: Senior standing.

333 Microelectronic Ceramic Processing (LEC 3.0) Materials, processing and design of microelectronic ceramics are covered. Introduction to devices, triaxial ceramics, high aluminas, tape fabrication, metallizations, thick film processing and glass-to-metal seals. Prerequisites: Cr Eng 203 & 242.

338 Thermal Properties Of Ceramics (LEC 3.0) This course will teach the crystal physics underlying heat capacity, internal energy, phonon and photon conduction, and thermal expansion. These properties will be used to rationalize the behavior of a wide variety of ceramic materials in severe
Thermomechanical/Electrical/Optical

Biomaterials I (LEC 3.0) This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Bio Sci 340, Met Eng 340, Chem Eng 340)

International Engineering and Design (LEC 3.0) A multi-disciplinary engineering course focused on sustainable design and technology transfer to developing countries. Course includes elements of traditional capstone design classes. Experiential learning through competitions and/or field work is a major component of the class. Prerequisite: Senior standing, instructor approval. (Co-listed with Geo Eng 352 and Met Eng 352)

Thermomechanical/Electrical/Optical Properties Lab (LAB 1.0) Laboratory consisting of three separate modules of experiments for the characterization of the thermomechanical, electrical and optical properties of ceramics. The student will choose one of the three modules. Prerequisite: IDE 110 or Cer Eng 284.

Refractories (LEC 3.0) The manufacture, properties, uses, performance, and testing of basic, neutral and acid refractories.

Glass Science And Engineering (LEC 3.0) The development, manufacturing methods, applications, and properties of flat, fiber, container, chemical, and special purpose glasses. Composition/property relationships for glasses and nucleation-crystallization processes for glass-ceramics are also covered. Prerequisite: Cr Eng 103.

Dielectric And Electrical Properties Of Oxides (LEC 3.0) The processes occurring in inorganic materials under the influence of an electric field are considered from basic principles. Emphasis is placed on application to real systems. Prerequisite: Cr Eng 284.

Principles Of Engineering Materials (LEC 3.0) Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Ae Eng 377, Ch Eng 347, Physics 377, Mt Eng 377)

Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

X-Ray Diffraction Laboratory (LAB 1.0) Practical aspects of sample preparation, instrument set-up, data collection, and analysis are covered. Students cannot receive credit for Cr Eng 292 and Cr Eng 392. Prerequisite: Preceded or accompanied by Cr Eng 291, or Cr Eng 477, or an advanced crystallography course.

Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

Interfacial Phenomena (LEC 3.0) The nature and constitution of inorganic interfaces, surface processes and consequences, epitaxy, thermal grooving, UHV techniques, field emission-ionization and evaporation, surface models, adsorption and nucleation.

Behavior Of Materials, Vi-Mechanical (LEC 3.0) Recent theories for the fracture of brittle materials, crystalline and noncrystalline, in relation to defects, both microscopic and submicroscopic, and techniques for determining strength of brittle materials.

Advanced Crystal Chemistry (LEC 3.0) Detailed treatment of crystal structure notation, space group symmetry, and bonding in complex structures. Symmetry changes and bonding relationships associated with thermal variations. Prerequisite: Chem 243.

Composite Materials (LEC 3.0) The objective of this course is to give the students an understanding of the processing, design, and mechanical behavior of composite materials. The course will treat both fiber reinforced and laminate-based composites with an emphasis on the macromechanical behavior of these composites with respect to their architecture. Prerequisite: Graduate Standing.

Optical Properties Of Materials (LEC 3.0) The objective of this course is to give the student a fundamental understanding of the structure-optical property relationships exhibited by isotropic and anisotropic materials. Topics will include the wave/particle nature of light, how light interacts with materials, color, and applications such as lasers, fiber optic communication systems, electro-optics, and integrated optics. Prerequisites: Physics 24 or 25 and Math 22.

Sintering And Microstructure Development (LEC 3.0) Theory and practice of densification, microstructure evolution, effect of processing and material factors, grain boundary migration, grain growth. Prerequisite: Graduate standing.

Biomaterials II (LEC 3.0) This course will introduce graduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. A term paper and
oral presentation are required. Prerequisite: Graduate Standing. (Co-listed with Bio Sci 440, Met Eng 440, Chem Eng 440)

450 Advanced Topics On The Vitreous State (LEC 3.0) Modern aspects of the structure and dynamics of inorganic vitreous materials will be reviewed and applied towards understanding the macroscopic properties of glasses. Prerequisite: Graduate standing.

458 Electroceramic Composite (LEC 3.0) The objective of this course is to give the student an understanding of the structure–property relationships exhibited by electroceramic composites. The composites of interest cover a wide range of electrical phenomena including composite dielectrics, piezoelectrics, conductors, magnets, and optics. Prerequisites: Cr Eng 284.

460 Crystal Anisotropy (LEC 3.0) The objective of this course is to give the student an understanding of crystal structure–physical property relationships. The relationship between symmetry and tensor representation will be examined, and then related to the mechanical, electrical and optical properties exhibited by the materials. Prerequisite: Cr Eng 102.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

491 Internship (IND 0.0-15.0) Students working toward a doctor of engineering degree will select with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Chemical Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

320 Chemical Process Flowsheeting (LEC 2.0 and LAB 1.0) The development, implementation, and evaluation of methods for determining the mathematical model of a chemical process, ordering the equations in the mathematical model, and solving the model. Prerequisite: Math 204 or graduate standing.

333 Intermediate Separation Processes (LEC 3.0) Fundamentals of separation operations such as extraction and distillation; rates of diffusion in equilibrium stages and continuous contactors; efficiencies; multistage contactors; performance of equipment; phase equilibrium data; multicomponent separation. Prerequisite: Ch Eng 235 or graduate standing.

335 Intermediate Transport Phenomena (LEC 3.0) The similarities of flow of momentum, heat and mass transfer and the applications of these underlying principles are stressed. Course is primarily for seniors and beginning graduate students. Prerequisite: Chem Eng 237 or Chem Eng 263 or graduate standing.

340 Biomaterials I (LEC 3.0) This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials–tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Cer Eng 340, Bio Sci 340, Met Eng 340)

341 Physical Property Estimation (LEC 3.0) Study of techniques for estimating and correlating thermodynamic and transport properties of gases and liquids. Prerequisite: Ch Eng 235 or graduate standing.

347 Principles Of Engineering Materials (LEC 3.0) Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Ae Eng 377, Physics 377, Mt Eng 377, Cr Eng 377)

349 Structure And Properties Of Polymers (LEC 3.0) A study of the parameters affecting structure and properties of polymers. Syntheses, mechanisms, and kinetic factors are emphasized from the standpoint of structural properties. Prerequisite: Ch Eng 235 or graduate standing.
146 - Chemical Engineering Courses

351 Principles Of Environmental Monitoring (LEC 3.0) This course introduces the fundamentals of particle technology, including particle characterization, transport, sampling, and processing. In addition, students will learn about the basic design of some industrial particulate systems and environmental and safety issues related to particulate handling. Prerequisites: Chem Eng 231 and Physics 24, or graduate standing.

355 Intermediate Process Dynamics And Control (LEC 3.0) A study of the dynamic properties of engineering operations and the interrelationships which result when these operations are combined into processes. Formulation of equations to describe open-loop and closed-loop systems. Prerequisite: Chem Eng 235 or graduate standing.

359 Plantwide Process Control (LEC 3.0) Synthesis of control schemes for continuous and batch chemical plants from concept to implementation. Multiloop control, RGA, SVD, constraint control, multivariable model predictive control, control sequence descriptions. Design project involving a moderately complicated multivariable control problem. Prerequisites: Chem Eng 251, Elec Eng 231, Elec Eng 235 or graduate standing. (Co-listed with El Eng 332)

365 Biochemical Reactors (LEC 3.0) Application of chemical engineering principles to biochemical reactors, and human physiology. Emphasis on cells as chemical reactors, enzyme catalysis and biological transport phenomena. Prerequisite: Preceded or accompanied by Chem Eng 281 or graduate standing.

371 Environmental Chemodynamics (LEC 3.0) Interphase transport of chemicals and energy in the environment. Application of the process oriented aspects of chemical engineering and science to situations found in the environment. Prerequisite: Chem Eng 237 or Chem Eng 263 or graduate standing.

373 Pollution Prevention Via Process Engineering (LEC 3.0) To arrive at environmentally benign process design, each processing system will be considered as an inter-connection of elementary units. Systematic methods capitalizing on synergistic process integrations will be employed. Linear, nonlinear and integer optimization, mass/heat exchange networks, and reactor and reaction networks will be used. Prerequisite: Ch Eng 235 or graduate standing.

379 Industrial Pollution Control (LEC 3.0) The study of water, air, and thermal pollution control methods and the application of these methods to the solution of pollution problems in the chemical industry. Prerequisite: Ch Eng 235 or graduate standing.

381 Corrosion And Its Prevention (LEC 3.0) A study of the theories of corrosion and its application to corrosion and its prevention. Prerequisite: Chem 243 or Mt Eng 281. (Co-listed with Mt Eng 381)

383 Intermediate Chemical Reactor Design (LEC 3.0) A study of homogeneous and heterogeneous catalyzed and noncatalyzed reaction kinetics for flow and batch chemical reactors. Application to reactor design is stressed. Prerequisite: Ch Eng 281 or graduate standing.

384 Interdisciplinary Problems In Manufacturing Automation (LEC 2.0 and LAB 1.0) The course will cover material necessary to design a product and the fixtures required to manufacture the product. Participants will gain experience with CAD/CAM software while carrying out an actual manufacturing design project. (Co-listed with Mc Eng 344, Eng Mg 344)

385 Patent Law (LEC 3.0) A presentation of the relationship between patent law and technology for students involved with developing and protecting new technology or pursuing a career in patent law. Course includes an intense study of patentability and preparation and prosecution of patent applications. Prerequisite: Senior or graduate standing. (Co-listed with Civ Eng 385, Eng Mg 369)

387 Interfacial Phenomena In Chemical Engineering (LEC 3.0) The course deals with the effects of surfaces on transport phenomena and on the role of surface active agents. Topics include fundamentals of thermodynamics, momentum, heat and mass transfer at interfaces and of surfactants. Some applications are included. Prerequisite: Chem Eng 237 or Chem Eng 263 or graduate standing.

388 Intermediate Process Design (LEC 3.0) Study of newer unit operations, fluidization, chromatographic absorption, new developments in operations previously studied. Comparison of operations which might be selected for the same end result in an industrial process. Prerequisite: Ch Eng 235 or graduate standing.

389 Industrial Chemical Processes (LEC 3.0) Detailed study of various industrial chemical manufacturing processes including underlying chemistry, reaction pathways and separation processes. Prerequisite: Ch Eng 235 or Chem 221, or graduate standing. (Co-listed with Chem 325)

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

410 Seminar (RSD 0.0-6.0) Discussion of current topics.

420 Applied Mathematics In Chemical Engineering (LEC 2.0 and LAB 1.0) Application of ordinary and partial differential equations in the solution of
chemical engineering problems, particularly in the unit operations. Infinite series, numerical analysis, graphical methods, theory of errors, and precision of measurements are included.

421 Applied Optimization In Chemical Engineering (LEC 3.0) An introduction to modern optimization techniques having applications in engineering economics, data analysis, process design and dynamics; methods such as Fibonacci, Partan, steep ascent, geometric, mathematical and dynamic programming.

425 Philosophy of Scientific Research (LEC 3.0) Introduction to the philosophy and management of scientific research, particularly issues related to ethics, plagiarism, ownership of intellectual properties, research techniques, technical presentations and time management. The course will address these issues by integrating with case studies. (Co-listed with IDE 425, Civ Eng 485, Env Eng 485, Elec Eng 481, Comp Eng 481)

433 Advanced Transport Phenomena (LEC 3.0) Course is concerned with all aspects of transport phenomena. Complete expressions for heat, mass and momentum transfer in all three coordinate systems are applied under both laminar and turbulent conditions.

440 Biomaterials II (LEC 3.0) This course will introduce graduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. A term paper and oral presentation are required. Prerequisite: Graduate Standing. (Co-listed with Cer Eng 440, Bio Sci 440, Met Eng 440)

445 Advanced Chemical Engineering Thermodynamics (LEC 3.0) Extension of thermodynamic principles as applied to nonideal systems. Use of existing thermodynamic data and correlations with emphasis on applications of chemical engineering problems in energy, mass and momentum transfer.

449 Plasma Polymerization (LEC 3.0) Fundamental aspects of polymer formation in plasma (weakly ionized gas), and properties of polymers formed by such a process are studied. Prerequisite: Ch Eng 375.

470 Physicochemical Operations In Environmental Engineering Systems (LEC 3.0) Course covers physicochemical operations and design in water, wastewater and aqueous hazardous waste treatment systems including coagulation, precipitation, sedimentation, filtration, gas transfer, chemical oxidation and disinfection, adsorption, ion exchange. Prerequisite: Civ Eng 230 or equivalent. (Co-listed with Env Eng 462 and Civ Eng 462)

481 Advanced Chemical Reactor Design (LEC 3.0) A study of homogeneous and heterogeneous reaction kinetics and catalysis with special emphasis on effects of mixing in design and scale-up of chemical reactors.

488 Advanced Chemical Process Design (LEC 2.0 and LAB 1.0) The use of advanced methods of economic, engineering, optimizing, and control techniques in planning, designing, and operating chemical process industries. Topics may be adjusted to include those of special interest or need in the above fields.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

491 Internship (IND 0.0-15.0) Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Chemistry Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Prerequisite: Preceded or accompanied by Chem 4 or an equivalent training program approved by UMR. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.
305 Advanced Chemical Preparations And Techniques (LEC 1.0 and LAB 2.0) A course designed to develop facility in the use of equipment and techniques commonly used in advanced work in experimental chemistry. Prerequisite: Preceded or accompanied by Chem 4 or an equivalent training program approved by UMR.

310 Undergraduate Seminar (RSD 1.0) Written and oral presentations of current topics in chemistry. This course may serve as part of the capstone requirement for chemistry majors.

321 Intermediate Organic Chemistry I (LEC 3.0) An advanced course designed to give the student a mastery of the fundamentals of organic chemical reactions and theory. Prerequisite: Chem 223.

322 Intermediate Organic Chemistry II (LEC 3.0) A systematic study of organic reactions, their mechanisms and synthetic applications. Prerequisites: Chem 223.

323 Instrumental Methods Of Chemical Analysis (LEC 3.0) A resume of the important aspects of quantitative and physical chemistry in biochemical processes. General subjects covered include: proteins, nucleic acids, enzymes, carbohydrates and lipids. Prerequisites: Chem 223 and Bio 211.

325 Industrial Chemical Processes (LEC 3.0) Detailed study of various industrial chemical manufacturing processes including underlying chemistry, reaction pathways and separation processes. Prerequisite: Ch Eng 235 or Chem 221, or graduate standing. (Co-listed with Ch Eng 389)

331 Selected Topics In Inorganic Chemistry (LEC 3.0) A study of inorganic chemistry with emphasis on physical methods. General subjects covered include: molecular structure, bonding, complexes, spectroscopy, and reaction rates.

337 Atmospheric Chemistry (LEC 3.0) A chemical study of the troposphere including composition; nucleation, growth stability, distribution, diffusion, and fallout of aerosols; and meteorological aspect. Prerequisite: Chem 243.

338 Advanced General Chemistry Laboratory (LAB 2.0) Experiments are integrated with the lectures and cover the chemical and physical properties of proteins, enzymes, nucleic acids, carbohydrates and lipids. Prerequisites: Preceded or accompanied by Chem 361 and Chem 4 or an equivalent training program approved by Missouri S&T.

340 Nuclear And Radiochemistry (LEC 3.0 and LAB 1.0) A study of the fundamentals of nuclear and radiochemistry including properties of radiations; effect of radiation on materials, production, measurement and use of radioactive tracers; and the chemistry of reactor materials. Laboratory training includes radiochemistry technology. Prerequisites: Physics 107 or 207 and preceded or accompanied by Chem 4 or an equivalent training program approved by Missouri S&T.

344 Advanced Physical Chemistry (LEC 3.0) Advanced undergraduate treatments of special topics of physical chemistry, which may include statistical mechanics, kinetics, group theory, or spectroscopy. Prerequisite: Chem 343.

345 Chemical Thermodynamics (LEC 3.0) A study of the laws of thermodynamics with application to chemical systems. Emphasis is placed on partial molal functions. Prerequisite: Chem 243.

349 The Physical Chemistry Of Colloidal Dispersions (LEC 3.0) The stability of colloidal systems is treated using the kinetic approach with interparticle potentials. The results are extended to practical systems of microemulsions, emulsions and foams. Prerequisite: Chem 343.

351 Advanced Analytical Chemistry (LEC 3.0) Theoretical and practical aspects of modern analytical chemistry. Prerequisite: Chem 251.

355 Principles Of Environmental Monitoring (LEC 3.0) This course provides an overview of environmental monitoring methodologies. Discussion covers thermodynamic and kinetic processes that affect chemical transport and fate in the environment. Federal environmental regulations and remediation technologies are also covered with
specific examples. Prerequisites: Chem 221, Physics 25.

381 Chemistry And Inherent Properties Of Polymers (LEC 3.0) A basic study of the organic chemistry of natural and synthetic high polymers, their inherent properties and their uses in plastic, fiber, rubber, resin, food, paper and soap industries. Prerequisite: Chem 223.

384 Polymer Science Laboratory (LEC 1.0 and LAB 2.0) Lectures and laboratory experiments dealing with polymerization reactions, solution properties and bulk or solid properties will be presented. Each student will prepare polymers and carry out all characterization experiments on actual samples. Prerequisite: Chem 381 or Ch Eng 375, preceded or accompanied by Chem 4 or an equivalent training program approved by Missouri S&T.

385 Fundamentals Of Protective Coating I (LEC 3.0) Study of the basic principles of protective coatings with particular reference to the paint and varnish industry. Classifications, manufacture, properties and uses of protective coatings. Prerequisite: Chem 223.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Does not lead to the preparation of a thesis. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor. Preparation of a written, detailed report is required of the student. Prerequisite: Must meet departmental requirements for instruction in laboratory safety. Consent of instructor required.

400 Special Problems (IND 0.0-6.0) Problems or reading on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

410 Seminar (RSD 0.0-6.0) Discussion of current topics.

411 Introduction to Chemistry Research (LEC 1.0) An introduction to chemical research topics of interest to the department presented by different faculty members. Special emphasis will also be placed on a discussion of ethics, plagiarism, codes of conduct, research notebooks, publishing, and presentations. Prerequisite: Graduate Student Status.

421 Advanced Organic Chemistry (LEC 3.0) An advanced study of organic chemistry including name reactions and current theory. Prerequisite: Chem 223.

423 Advanced Synthetic Organic Chemistry (LEC 3.0) A discussion of a large numer of synthetically useful reactions involving enolates and enamines; nucleophilic additions to carbonyl compounds; functional group interconversions, thermal pericyclic reactions; organometallic compounds; carbocations, carbenes and free radicals as reactive intermediates; aromatic substitutions; and multistep synthesis. Prerequisite: Chem 321 or equivalent.

425 Physical Organic Chemistry (LEC 3.0) An advanced course in theoretical organic chemistry treating molecular orbital theory, free energy relationships, transition state theory, and other fundamental topics. Prerequisite: Chem 321.

431 Inorganic Reaction Mechanisms (LEC 3.0) A study of the reaction mechanisms of inorganic compounds involving both metallic and non metallic elements. The topics covered include, substitution, exchange, oxidation-reduction and electron transfer reactions in inorganic systems. Prerequisite: Chem 237 or Chem 331.

432 Bioinorganic Chemistry (LEC 3.0) Metallobio-molecules, including metalloenzymes and other metalloproteins; oxygen carriers; iron transport and other iron proteins; copper proteins; cancer agents and cures; nitrogen-fixation, etc. Prerequisite: Chem 331.

436 X-ray Crystallography (LEC 2.0 and LAB 2.0) Molecular and crystal structure determination by single crystal x-ray diffraction methods. Brief coverage of relation to neutron and electron diffraction.

440 The Physical Chemistry Of Colloidal Dispersions (LEC 3.0) A study of the properties of colloidal systems. Prerequisite: Chem 243.

442 Neutron Diffraction (LEC 3.0) A study of neutron diffraction techniques as applied to nuclear and magnetic structures of alloys, compounds, single crystal and polycrystalline materials. Prerequisites: Physics 25 and 26.

443 Advanced Chemical Thermodynamics (LEC 3.0) Partial molar enthalpy and free energy. The third law of thermodynamics measurement of absolute entropy and correlation of thermodynamic properties. Microscopic and macroscopic theory of
non-equilibrium thermodynamics. Prerequisite: Chem 243.

444 Spectroscopy (LEC 3.0) Introduction to the interaction of electromagnetic radiation with matter. Emphasis on the ultraviolet, visible, and radio portions of the spectrum. Prerequisite: Chem 343 or equivalent.

445 Quantum Chemistry I (LEC 3.0) A rigorous introduction to the fundamental concepts and principles of quantum chemistry. Application to translational, vibrational, and rotational motion; one-electron systems. Prerequisite: Chem 343 or equivalent.

446 Quantum Chemistry II (LEC 3.0) Atomic and molecular quantum mechanics. Emphasis on selfconsistent field, variational, and perturbation theories. Introduction to approximate methods. Prerequisite: Chem 343 or equivalent.

447 Statistical Thermodynamics (LEC 3.0) Derivation of the partition function and its application to chemical systems. Prerequisite: Chem 243.

449 Chemical Kinetics (LEC 3.0) An introduction to the deduction of mechanisms of homogeneous chemical reactions from rate-data. Selected topics, such as photochemistry, free-radical mechanisms, catalysis, and explosion reactions. Prerequisite: Chem 243.

451 Advanced Quantitative Analysis (LEC 3.0) A study of the quantitative analysis of the chemical elements based on their periodic arrangement and group separations. Emphasis is placed on the analysis of the less common elements. Prerequisite: Chem 251.

453 Separations (LEC 3.0) An in-depth study of all types of analytical and preparativescale separations. A special emphasis will be placed on chromatography and chromatographic theory. Prerequisite: Chem 355 or equivalent.

455 Chemical Spectroscopy (LEC 3.0) A study of the electronic, vibrational, rotational and nuclear magnetic resonance spectra of atoms and molecules. A basic understanding of the underlying theoretical principles and the interpretations of results is stressed. Prerequisite: Chem 355, Chem 343 or equivalent courses.

457 Electrochemistry (LEC 3.0) Introduction to the fundamentals, methods and applications of electrochemistry. Fundamentals cover the thermodynamics/kinetics of electrode reactions, and the modes of mass transport in the electrolyte. Methods cover potentiometric, amperometric, and a.c. techniques. Applications focus on analysis and study of materials. Prerequisite: Chem 243.

458 Principles And Applications Of Mass Spectrometry (LEC 3.0) The course covers fundamental physical principles of mass spectrometry, instrumentation, interpretation of spectra, and applications in environmental, polymer, biomedical, and forensic fields. Prerequisite: Chem 251 or equivalent.

464 Free Radicals In Biochemistry (LEC 3.0) The study of the basic principles of free radical chemistry and biochemistry. Prerequisites: Chem 221, Chem 223 and Bio Sci 211.

465 Enzymology (LEC 2.0 and LAB 1.0) The study of the chemical and physical properties, mechanisms of action, and commercial uses of enzymes. Laboratory experiments are designed to illustrate the catalytic properties of enzymes. Prerequisites: Chem 361 and 362.

467 Intermediary Metabolism And Biosynthesis (LEC 3.0) The course covers the biosynthesis and metabolism of nucleic acids, carbohydrates, lipids and proteins. Prerequisite: Chem 363.

468 Advanced Biochemical Techniques (LAB 2.0) Offers training in techniques and manipulation of equipment, sterile procedures, isolation and identification of biochemical material. Prerequisite: Chem 362.

471 Advanced Nuclear Chemistry (LEC 3.0) A study of the production and decay of nuclei, radioactive dating techniques, and the abundance and origin of the chemical elements. Prerequisites: Chem 371, Physics 107 or 207.

472 Radiation Chemistry (LEC 3.0) A study of the chemical and physical effects of high energy radiation in nonmetallic fluids, gases, liquids, and solids. Prerequisite: Chem 371, Physics 107 or 207.

484 Polymer Physical Chemistry And Analysis (LEC 3.0) A study of the physical properties of macromolecular systems including polymer solutions, gels, bulk polymers and rubbers. The chemical characterization of polymers based on their thermal, spectroscopic, microstructure and molecular weight is also discussed. Prerequisites: Chem 223 and Chem 243.

486 Inorganic Polymers (LEC 3.0) A basic study of inorganic natural and synthetic polymers, their formation and reactivity, their inherent properties, methods of characterization and applications. Prerequisite: Chem 237 or equivalent.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisite: Must meet departmental requirements for instruction in laboratory safety. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for
Civil Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Geomatics (LEC 3.0) Horizontal and vertical geodetic datums and networks. Theory, calculations and applications of State Plane Coordinate Systems. Introduction to Geographic and Land Information Systems: hardware and software issues; data quality and accuracy; resource, environmental, cadastral and governmental applications; databases; GIS/LIS trends. Introduction to Global Positioning Systems (GPS): Project planning, data collection, data processing and network adjustment applications, Kinematic and RealTime GPS applications, hardware and software options and costs. Prerequisite: Cv Eng 1 with grade of "C" or better.

304 Legal Aspects Of Boundary Surveying (LEC 3.0) The U.S. Public Land Survey System (USPLSS): original GLO survey instructions and procedures. Resurveys on the USPLSS law, standards, procedures with emphasis on Missouri. Rights in real property; statute, case and administrative law applied to boundaries. Simultaneous and sequence conveyances. Unwritten rights in real property. Riparian boundaries. Writing and interpreting boundary descriptions. Land surveyor duties and responsibilities. Prerequisite: Cv Eng 1 with grade of "C" or better.

306 Surveying Systems (LEC 3.0) Celestial observations for azimuths. Introduction to State Plane Coordinate systems. Theory and calculations. Route surveying and geometrics, horizontal, spiral and vertical curves. Surveying aspects of residential and commercial subdivision design: lot layout, rights of way, easements, setbacks, platting, planning and zoning constraints, application of surveying software. Instrumentation: total stations, electronic levels, instrument calibrations. Prerequisite: Cv Eng 1 with grade of "C" or better.

310 Seminar (LEC 1.0) Discussion of current topics. Prerequisite: Senior standing.

311 Geometric Design Of Highways (LEC 2.0 and LAB 1.0) Development and applications of concepts of geometric design for rural and urban highways.
Multidisciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior Standing and Math 204. (Co-listed with Ae Eng, E Mech, Mc Eng and El Eng 329)

319 Applied Mechanics In Structural Engineering (LEC 3.0) A study of the basic relationships involved in the mechanics of structures. Topics include basic elasticity, failure criteria, fundamental theories of bending and buckling of plates and cylindrical shells for practical application in analysis and design of bridge, building floors, and shell roofs. Prerequisite: Cv Eng 217 with grade of "C" or better. (Co-listed with Arch Eng 329)

320 Structural Analysis II (LEC 3.0) Classical displacement and force methods applied to structures of advanced design. Analysis of indeterminate structures such as continuous beams, arches, cables, and two and three dimensional frames, and trusses. Analysis of indeterminate structures involving temperature and support settlements effects. Prerequisites: Civ Eng 217 or Arch Eng 217. (Co-listed with Arch Eng 320)

322 Analysis And Design Of Wood Structures (LEC 3.0) A critical review of theory and practice in design of modern wood structures. Effect of plant origin and physical structure of wood on its mechanical strength; fasteners and their significance in design; development of design criteria and their application to plane and three dimensional structures. Prerequisite: Cv Eng 217 with grade of "C" or better. (Co-listed with Arch Eng 322)

323 Computer Methods of Structural Analysis (LEC 3.0) Force and displacement matrix methods and computer methods applied to structural analysis. Analysis of indeterminate structures such as continuous beams, and two and three dimensional frames and trusses. Analysis of indeterminate structures involving temperature and support settlements effects using computer methods formulation. Prerequisite: Cv Eng 217 with grade of "C" or better. (Co-listed with Arch Eng 323)

326 Advanced Steel Structures Design (LEC 3.0) The design of structural steel systems into a final integrated structure. Plate girders, composite systems, stability, connections, rigid frames, single and multistory buildings, and similar type problems of interest to the student. Use of the computer as a tool to aid in the design will be emphasized. Prerequisites: Cv Eng 221 with a grade of "C" or better. (Co-listed with Arch Eng 326)

327 Advanced Concrete Structures Design (LEC 3.0) The design of structural concrete systems into a final integrated structure. Two-way slabs, long columns, connections, and discontinuity regions, deflections and cracking of beams and slabs, ACI design criteria, and similar type problems of interest to the student. Use of the computer as a tool to aid in the design will be emphasized. Prerequisite: Cv Eng 223 with a grade of "C" or better. (Co-listed with Arch Eng 327)

328 Prestressed Concrete Design (LEC 3.0) Behavior of steel and concrete under sustained load. Analysis and design of pre-tensioned and post-tensioned reinforced concrete members and the combining of such members into an integral structure. Prerequisite: Cv Eng 223 with a grade of "C" or better. (Co-listed with Arch Eng 328)

329 Foundation Engineering II (LEC 3.0) Classical earth pressure theories. Analysis of shallow and deep foundations to include bearing capacity and settlement of footings, rafts, piles, and drilled piers. Analysis of stability and design of retaining walls and anchored bulkheads. Prerequisites: Cv Eng 229 with a grade of "C" or better. (Co-listed with Arch Eng 329)

330 Unsteady Flow Hydraulics (LEC 3.0) The study of unsteady flow and its effect on closed water systems and in open channels. Prerequisites: Cv Eng 230 with a grade of "C" or better.

331 Hydraulics Of Open Channels (LEC 3.0) The phenomena accompanying the flow of water in open channels, such as uniform and varied flow, critical conditions, backwater curves, hydraulic jump, hydraulic drop and applications are studied in detail. Prerequisites: Cv Eng 230 with a grade of "C" or better.

333 Intermediate Hydraulic Engineering (LEC 3.0) Application of fluid mechanics principles to the design. Kinematics of fluid motion, conservation of mass, linear and angular momentum, and energy. Requirements for similarity of fluid flow. Introduction to dynamics of fluid flows and viscous incompressible flows. Prerequisites: Cv Eng 230 with a grade of "C" or better.

335 Water Infrastructure Engineering (LEC 2.0 and LAB 1.0) Fundamental principles underlying comprehensive water infrastructure development; sanitary sewers, sanitary treatment facilities, stormwater sewers, stormwater detention, water power development, and hydraulic structures. The student is responsible for the planning and design of a water infrastructure development project. Prerequisite: Cv Eng 230 with a grade of "C" or better.

337 River Mechanics And Sediment Transport (LEC 3.0) Formation of rivers and the laws governing river regulation and improvements, including navigation and flood protection. Principles governing sediment transport. Prerequisites: Cv Eng 230 with a grade of "C" or better.

338 Hydrologic Engineering (LEC 3.0) A study of current up-to-date hydrologic techniques involving design of hydrologic input for bridges, culverts, reservoirs. Techniques involve extreme value
361 Remediation Of Contaminated Groundwater And Soil (LEC 2.0 and LAB 1.0) Course covers current in-situ and ex-situ remediation technologies. Current literature and case studies are utilized to provide the focus for class discussions and projects. Prerequisites: Cv Eng 265, Ge Eng 337 or Graduate Standing. (Co-listed with Env En 361)

362 Public Health Engineering (LEC 3.0) A comprehensive course dealing with the environmental aspects of public health. Prerequisites: Cv Eng 261 with a grade of "C" or better. (Co-listed with Env En 362)

363 Solid Waste Management (LEC 3.0) A systematic study of the sources, amounts and characteristics of solid wastes and methods used for their collection, reclamation, and ultimate disposal. Prerequisites: Cv Eng 261 with grade of "C" or better; or graduate standing. (Co-listed with Env En 363)

364 Environmental Systems Modeling (LEC 3.0) Introductory course in modeling environmental systems. Course will focus on contaminant fate and transport in the environment. Models will be developed that will include physical, chemical and biological reactions and processes that impact this fate. Prerequisites: Env En/Cv Eng 261, Env En/Cv Eng 262 and Env En/Cv Eng 263; or Graduate standing. (Co-listed with Env En 364)

367 Introduction To Air Pollution (LEC 3.0) Introduction to the field of air pollution dealing with sources, effects, federal legislation, transport and dispersion and principles of engineering control. Prerequisite: Cv Eng 230; or graduate standing. (Co-listed with Env En 367)

368 Air Pollution Control Methods (LEC 3.0) Study of the design principles and application of the state-of-the-art control techniques to gaseous and particulate emissions from fossil fuel combustion, industrial and transportation sources. Prerequisite: Cv Eng 230; or graduate standing. (Co-listed with Env En 368)

369 Sanitary Engineering Design (LEC 2.0 and LAB 1.0) Functional design of water and waste water treatment facilities. Prerequisites: Cv Eng 265 with a grade of "C" or better. (Co-listed with Env En 369)

373 Air Transportation (LEC 2.0 and LAB 1.0) Runway configuration, airfield capacity, geometrics and terminal layout and design. Aircraft performance; navigation and air traffic control; airport planning and design; airline operations; aviation systems planning. Prerequisite: Cv Eng 211 with a grade of "C" or better.

374 Infrastructure Strengthening With Composites (LEC 3.0) The course presents composite materials and includes principles of reinforcing and strengthening for flexure, shear, and ductility enhancement in buildings and bridges. It covers the design of existing members strengthened with externally bonded laminates and near surface mounted composites. Case studies will be discussed. Prerequisites: Civ Eng/Arch Eng 217, Civ Eng/Arch Eng 223. (Co-listed with Arch Eng 374)

375 Low-Rise Building Analysis And Design (LEC 3.0) Characterization of various design loads, load combinations, general methodology of structural designs against lateral loads, code-oriented design procedures, distribution of lateral loads in structural systems, application of the International Building
380 Water Resources And Wastewater Engineering (LEC 3.0) Application of engineering principles to the planning and design of multipurpose projects involving water resources development and wastewater collection/treatment/disposal/systems. Latest concepts in engineering analysis are applied to evaluation of alternative solutions. Prerequisites: Cv Eng 233, 235, 265. (Co-listed with Env En 380)

382 Teaching Engineering (LEC 3.0) Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mg 370, Env En 382, Cp Eng 382, El Eng 382)

385 Patent Law (LEC 3.0) A presentation of the relationship between patent law and technology for students involved with developing and protecting new technology or pursuing a career in patent law. Course includes an intense study of patentability and preparation and prosecution of patent applications. Prerequisite: Senior or graduate standing. (Co-listed with Eng Mgt 369, Chem Eng 385)

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

410 Seminar (RSD 0.0-6.0) Discussion of current topics.

411 Transportation Systems Analysis (LEC 3.0) Concepts and principles fundamental to the planning, design, operation, and management of transportation systems using a systems perspective to transportation problems. Concepts from economics, engineering, operations research, management, psychology, and public policy analysis are used throughout. Topics include linear and non-linear programming, dynamic programming, supply-demand microeconomic framework, analysis of transportation demand, system performance, network equilibrium, simulation and associated case studies. Prerequisite: Cv Eng 353.

412 Numerical Methods In Geotechnical Engineering (LEC 3.0) Survey of computer methods of analyzing complex geotechnical engineering problems. Finite element, finite difference and closed form solution techniques. Existing computer models are used to analyze axially and laterally loaded piles, seepage, consolidation and settlement behavior. Prerequisite: Graduate standing.

413 Dynamics Of Earth Materials (LEC 3.0) Theory of vibration, spectral response, site-specific response spectra, detailed design of retaining structures, pile and machine foundations, soil structure interaction. Dynamic soil properties, including degradation of soil properties and liquefaction, seismic slope stability analysis problem solving. Select research topics and use of computer codes. Prerequisite: Preceded or accompanied by Cv Eng 316.

414 Measurement Of Soil Properties (LEC 2.0 and LAB 1.0) Laboratory determination of soil properties with emphasis on practical. Applications of test data. Tests include classification, atterberg limits, consolidation, compaction, triaxial shear tests with pore pressure measurement, and direct shear tests. Preparation of technical reports. Prerequisite: Preceded or accompanied by Cv Eng 315.

415 Advanced Soil Mechanics (LEC 3.0) Advanced topics and recent advances in theoretical soil mechanics. Topics may include stress distribution, failure theories, shear failure in ideal soils, consolidation and settlement, physico-chemical properties, and clay mineralogy. Prerequisite: Cv Eng 315.

416 Soil Stabilization (LEC 3.0) The application of mineralogical and physicochemical principles to soil stabilization problems and stabilization techniques for highway and foundation applications. Prerequisite: Cv Eng 315.

417 Earth Dams And Related Problems (LEC 3.0) The exploration for and selection of site and materials, seepage analysis, slope stability and design, embankment design, compaction, instrumentation and construction operations as they pertain to earth and rockfill dams. Prerequisite: Cv Eng 315.

419 Advanced Behavior Of Reinforced And Prestressed Concrete (LEC 3.0) Behavior of reinforced and prestressed concrete sections, members and wall/shell-type elements subjected to bending, axial load, shear and torsion. Confinement of concrete. Various truss model theories applicable to main members and strut-tie model applicable to disturbed regions, joints, and connections. Prerequisite: Cv Eng 223 with grade of "C" or better.

421 Plastic Analysis And Design Of Metal Structures (LEC 3.0) Behavior of engineering materials in the inelastic stress range. Analysis and design of elementary structural members and frames.
422 Analysis And Design Of Plates And Shells I (LEC 3.0) Fundamental theories of bending and buckling of plates for practical applications in analysis and design of bridge and building floors, highway and airport pavements, and structural plate components. Shell theory with application to tanks, pressure vessels, shell roofs, and folded plate construction. Prerequisite: Preceded or accompanied by Cv Eng 323.

424 Structural Dynamics And Earthquake Engineering (LEC 3.0) Behavior of structural materials, elements, and systems under dynamic loads and earthquake excitation; computer methods for response analysis of lumped, consistent, and distributed mass models; eigensolution techniques; design of 2-D and 3-D seismic-resistant structures with current building code.

426 Advanced Design In Steel And Lightweight Structures (LEC 3.0) A critical evaluation of the theories of design and actual behavior of metal components and their connections. The basis of the development of the pertaining codes will be considered. Prerequisite: Preceded or accompanied by Cv Eng 323.

428 Analysis Of Nonlinear Structures (LEC 3.0) Inelastic behavior of structural members and connections; formulation of various models for steel and reinforced concrete including elasto-plastic, bilinear, trilinear, Ramberg-Osgood, Cheng-Mertz, and Cheng-Lou; matrix analysis of 2-D and 3-D building structures for geometric and material nonlinearity; dynamic and stability analysis. Prerequisite: Preceded or accompanied by Cv Eng 323.

429 Foundation Engineering III (LEC 3.0) A critical study of modern concepts of foundation engineering including current procedure for the application of soil mechanics principles to the design of foundations, embankments and retaining structures. Case histories will be emphasized with the student making successive design decisions.

431 Advanced Hydraulics And Hydraulic Engineering (LEC 0.0-6.0) Studies in the field of hydraulic engineering to fit the needs of a particular student or class. Each student makes a complete design of a hydraulic development in one of the following fields: water power, sanitation, river and harbor projects. Prerequisite: Cv Eng 230.

435 Hydraulic Structures (LEC 0.0-3.0) Gravity, arch, multiple arch, and buttress dams including appurtenances such as spillways, penstocks and gates. Latter part of course is designed to needs of the individual student with applications to river and harbor structures, canal and irrigation structures, and sewage structures. Prerequisites: Cv Eng 223 and 230.

438 Advanced Hydrology (LEC 3.0) A study of methods used in modern hydrologic analysis and design. Items of study include hydrograph analysis, maximum possible storm, infiltration, design flood determination and project feasibility. Prerequisite: Cv Eng 233.

440 Urban Hydrology (LEC 3.0) Studies of the influence of urban areas on their hydrology. Special emphasis on the principles of spatially varied unsteady flow. Model hydrographs leading toward determination of design storm flow are utilized to obtain information necessary for design of storm sewers, channels, and hydraulic structures common to urban areas. Prerequisite: Cv Eng 233.

442 Construction Administration, Planning And Control (LEC 3.0) Study of construction project development and execution, ranging from preliminary engineering to project turnover. Key topics include bidding strategies, quality control, conceptual estimating, scheduling, progress and cost control, value engineering, safety and construction productivity. Prerequisite: Preceded or accompanied by Cv Eng 345.

443 Contract Formulation And Project Delivery Systems (LEC 3.0) Project life-cycle planning and management. Roles and responsibilities of contract participants. Construction contract formulation. Obtaining work by negotiating and by bidding. Forms and variations of project delivery systems. Prerequisite: Cv Eng 345 or Cv Eng 349.

445 Advanced Construction Engineering (LEC 3.0) Study of the temporary structures and plant used in construction. Key topics include legal implications, codes and regulations, falsework, slipforming, bridge construction supports, and protection of adjacent facilities. Prerequisite: Preceded or accompanied by Cv Eng 345.

453 Transportation Planning (LEC 3.0) Study of urban development, mobility patterns, and the transportation network. Transportation modeling techniques; transportation control plans to improve air quality; consideration of the transportation disadvantaged; transportation planning in smaller cities and rural areas. Access management and site impact analysis of traffic generators. Prerequisite: Cv Eng 353 or consent of instructor.

456 Traffic Modeling and Simulation (LEC 3.0) Fundamentals of system simulation, components of a simulation model, traffic flow simulation approaches, traffic flow simulation software and their applications, building simulation models, verification and validation of a simulation model, output analysis, variance reduction techniques, role of simulation in Intelligent Transportation Systems (ITS). Prerequisites: Stat 213, Civ Eng 211 preceded or accompanied by Civ Eng 353.
460 Chemical Principles In Environmental Engineering (LEC 3.0) The course develops fundamental chemical and physical principles underlying environmental engineering systems including drinking water, groundwater, and wastewater treatment; and natural environmental processes. Topics include adsorption, complex formation, acid-base equilibria, solubility, mass transfer and diffusion, electrochemistry, and chemical kinetics. Prerequisite: Graduate Standing. (Co-listed with Env En 460)

461 Biological Principles In Environmental Engineering Systems (LEC 2.0 and LAB 1.0) Course covers the fundamental biological and biochemical principles involved in natural and engineered biological systems. (Co-listed with Env En 461)

462 Physicochemical Operations In Environmental Engineering Systems (LEC 3.0) Course covers physicochemical operations and design in water, wastewater and aqueous hazardous waste treatment systems including coagulation, precipitation, sedimentation, filtration, gas transfer, chemical oxidation and disinfection, adsorption, ion exchange. Prerequisite: Civ Eng 230 or equivalent. (Co-listed with Env Eng 462 and Chem Eng 470)

463 Biological Operations In Environmental Engineering Systems (LEC 3.0) Course covers biological operations and design in water, wastewater and aqueous hazardous waste treatment systems including modeling of biological treatment processes; and design of activated sludge systems, trickling filters, rotating biological contractors, lagoons, nitrification and denitrification, and digestion processes. Prerequisite: Cv Eng 230 or equivalent. (Co-listed with Env En 463)

464 Industrial And Hazardous Waste Treatment (LEC 2.0 and LAB 1.0) Course covers fundamentals of industrial and hazardous wastewater treatment systems and characterization including physical, chemical and biological processes and laboratory pilot plant investigations. (Co-listed with Env En 464)

465 Environmental Engineering Analysis Laboratory (LEC 1.0 and LAB 2.0) Environmental Engineering analytical principles and techniques applied to the quantitative measurement of water, wastewater and natural characteristics, and application of advanced instrumentation methods in Environmental Engineering. Prerequisite: Cv Eng 261 or equivalent, with a grade of “c” or better. (Co-listed with Env En 465)

467 Environmental Chemistry (LEC 2.0 and LAB 1.0) This course covers the fundamental and applied aspects of environmental chemistry including inorganic, organic, and analytical chemical principles. The course emphasizes the aquatic environmental and covers gas laws and solubility, chemical modeling, equilibria, acid-base and complexation relationships, oxidation and photochemical reactions. Prerequisite: Graduate standing in engineering or science curricula. (Co-listed with Env En 467)

485 Philosophy of Scientific Research (LEC 3.0) Organization and planning of research. Introduction to the philosophy and management of scientific research, particularly issues related to ethics, plagiarism, ownership of intellectual properties, research techniques, technical presentations and time management. The course will address these issues by integrating with case studies. (Co-listed with Chem Eng 425, IDE 425, Env Eng 485, Elec Eng 481, Comp Eng 481)

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

491 Internship (IND 0.0-15.0) Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high-level engineering experience consistent with the intent of the doctor of engineering degree.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee by the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

499 Case Studies In Civil Engineering (LEC 3.0) This course may be taken as part of a non-thesis graduate program. It will be an in-depth study of a topic selected by the student in concert with his graduate advisor. The product of this work will include a comprehensive term paper or civil engineering design project and include an oral presentation of the student’s work. Prerequisite: Graduate standing.
Computer Engineering Courses

300 Special Problems (IND 1.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 1.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

311 Introduction To Vlsi Design (LEC 3.0) An introduction to the design and implementation of very large scale integrated systems. Procedures for designing and implementing digital integrated systems, structured design methodology, stick diagrams, scalable design rules, and use of computer aided design tools. Prerequisite: Cp Eng 213.

312 Digital Systems Design Laboratory (LEC 2.0 and LAB 1.0) Experimental studies of problems with high speed digital signals in circuits. Student designs, wires, tests, and programs a microprocessor based single board computer project. A FPGA design is programmed and tested. Prerequisite: Cp Eng 213 or 311.

313 Principles of Computer Architecture (LEC 3.0) Principles of performance measurement and instruction set design; advanced issues in pipelining; instruction level parallelism (dynamic scheduling, branch prediction, multi-issue processors); memory hierarchies for superscalar processors; multiprocessors; storage devices; and network technologies. Prerequisites: Cp Eng 213 and Cp Eng 214.

314 Embedded Processor System Design (LEC 3.0) Development of hardware and software for embedded systems, including real-time operating systems, advanced programming, communication schemes, hardware peripherals and sensors, control methodologies, printed-circuit board design, interrupts, microcontrollers, and hardware-software co-design. One or more team design projects. Prerequisites: Comp Eng 213 or equivalent and 80x51 processor experience.

315 Digital Computer Design (LEC 3.0) Organization of modern digital computers; design of processors, memory systems and I/O units, hardware-software trade-offs in different levels of computer system design. Prerequisites: Cp Eng 213 and Cp Eng 214.

316 Advanced Microcomputer System Design (LEC 3.0) The design of digital systems based on advanced microprocessors. Introduction to microcomputer logic development systems. I/O interfaces. Assembly and high level language trade-offs. Hardware and software laboratory projects required. Prerequisite: Cp Eng 313.

318 Digital System Modeling (LEC 3.0) Digital system modeling for simulation, synthesis, and rapid system prototyping. Structural and behavioral models, concurrent and sequential language elements, resolved signals, generics, configuration, test benches, processes and case studies. Prerequisite: Comp Eng 111 with a grade of "C" or better.

319 Digital Network Design (LEC 3.0) Design of computer networks with emphasis on network architecture, protocols and standards, performance considerations, and network technologies. Topics include: LAN, MAN, WAN, congestion/flow/error control, routing, addressing, broadcasting, multicasting, switching, and internet working. A modeling tool is used for network design and simulation. Prerequisite: Comp Eng 213 or computer hardware competency.

325 Optical Computing (LEC 3.0) Introduction to the principles, subsystems, and architectures of optical computing. Topics include characteristics of optical devices; optical implementations of memory, logic elements, and processors; and computational structures. Prerequisite: Comp Eng 111 or equivalent. (Co-listed with Elec Eng 325)

331 Real-Time Systems (LEC 3.0) Introduction to real-time (R-T) systems and R-T kernels, also known as R-T operating systems, with an emphasis on scheduling algorithms. The course also includes specification, analysis, design and validation techniques for R-T systems. Course includes a team project to design an appropriate R-T operating system. Prerequisite: Cp Eng 213 or Cmp Sc 284.

342 Real-Time Digital Signal Processing (LEC 2.0 and LAB 1.0) Introduction to the use of programmable DSP chips. Includes real-time data acquisition, signal generation, interrupt-driven programs, high-level language, and assembly level routines. Applications to real-time systems are also presented. Prerequisites: Comp Eng 213 and Elec Eng 267.

345 Digital Image Processing (LEC 3.0) Fundamentals of human perception, sampling and quantization, image transforms, enhancement, restoration, channel and source coding. Prerequisite: El Eng 267 (Co-listed with El Eng 345)

347 Machine Vision (LEC 3.0) Image information, image filtering, template matching, histogram transformations, edge detection, boundary detection, region growing and pattern recognition. Complementary laboratory exercises are required. Prerequisites: Comp Eng 111 and preceded or accompanied by Elec Eng 267. (Co-listed with Elec Eng 347)

348 Wireless Networks (LEC 2.0 and LAB 1.0) Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols,
wireless LAN, IEEE 802.11, and adhoc and sensor networks. Prerequisites: Hardware competency, Elec Eng 243 or Comp Eng 213 and graduate standing. (Co-listed with Elec Eng 348 and Sys Eng 348.

349 Trustworthy, Survivable Computer Networks (LEC 3.0) This course examines basic issues in network management, testing, and security; it also discusses key encryption, key management, authentication, intrusion detection, malicious attack, and insider threats. Security of electronic mail and electronic commerce systems is also presented. Prerequisite: Cp Eng 319 or Cmp Sc 285.

354 Mathematical Logic I (LEC 3.0) A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 15 with junior standing or Math 305 or Comp Sci 253 or Comp Eng 111. (Co-listed with Comp Sci 354, Philos 354 and Math 354)

358 Computational Intelligence (LEC 3.0) Introduction to Computational Intelligence (CI), Biological and Artificial Neuron, Neural Networks, Evolutionary Computing, Swarm Intelligence, Artificial Immune Systems, Fuzzy Systems, and Hybrid Systems. CI application case studies covered include digital systems, control, power systems, forecasting, and time-series predictions. Prerequisite: Stat 217. (Co-listed with Elec Eng 367 and Sys Eng 367)

372 Signal Integrity In High-Speed Digital & Mixed Signal Design (LEC 3.0) Signal integrity ensures signals transmitted over a propagation path maintain sufficient fidelity for proper receiver operation. Compromised signal integrity is often associated with parasitics (e.g. unintentional inductance, capacitance). Theory and CAD tools used for signal integrity analysis of functioning designs. Prerequisites: El Eng 271 or Cp Eng 213, and Senior standing. (Co-listed with El Eng 372)

378 Mechatronics (LEC 2.0 and LAB 1.0) This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 279 or equivalent. (Co-listed with Mech Eng 378, Aero Eng 378 and Elec Eng 378)

382 Teaching Engineering (LEC 3.0) Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mg 370, Env En 382, El Eng 382, Cv Eng 382)

390 Undergraduate Research (IND 1.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

391 Computer Engineering Senior Project I (RSD 0.5 and LAB 0.5) A complete design cycle. Working in small teams, students will design, document, analyze, implement, and test a product. Topics include: Iteration in design, prototyping, group dynamics, design reviews, making effective presentations, concurrent design, designing for test, ethics and standards, testing and evaluation. Prerequisites: Stat 217, Cp Eng 111, Econom 121 or 122, Sp&M S 85, English 160, Cp Eng 213, 214, and a computer organization elective.

392 Computer Engineering Senior Project II (LAB 3.0) A continuation of Cp Eng 391. Prerequisite: Cp Eng 391.

400 Special Problems (IND 1.0-6.0) Problems or readings on specific subjects or projects in the department. Prerequisite: Consent of the instructor.

401 Special Topics (Variable 1.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title. Prerequisite: Consent of the instructor.

404 Data Mining And Knowledge Discovery (LEC 3.0) Data mining and knowledge discovery utilized both classical and new algorithms, such as machine learning and neural networks, to discover previously unknown relationships in data. Key data mining issues to be addressed include knowledge representation and knowledge acquisition (automated learning). Prerequisites: Comp Sci 304 or 347, Stat 215. (Co-listed with Comp Sci 404 and Sys Eng 404)

409 Topics in VLSI Systems (LEC 3.0) This course deals with issues related to VLSI systems, rather than low-level issues at the transistor or layout level. Topics include VLSI testing, design for test, noise and defect modeling, formal verification, yield analysis, timing analysis and systems-on-a-chip. Prerequisite: Comp Eng 311.

411 Advanced VLSI Design (LEC 3.0) Advanced topics in chip-level VLSI design, including issues related to high-performance, low-power, analog and mixed-signal circuits, reliability, noise and coupling mechanisms, computer aided design tools, and recent advances and trends in the field. Prerequisite: Comp Eng 311 is required.

412 Digital Logic (LEC 3.0) Digital logic analysis, synthesis and simulation. Design automation of digital systems. Prerequisites: Cp Eng 111 and Cp Eng 112.

415 Advanced Computer Architecture I (LEC 3.0) Advanced topics in computer structures, parallel processors, and computer networks. Emphasis on
416 Advanced Computer Architecture II (LEC 3.0) Continuation of Computer Engineering 415. Prerequisite: Cp Eng 415.

419 Network Centric Systems (LEC 3.0) Network-centric systems comprises a diverse category of complex systems with the primary purpose is providing network-type services. Network-centric systems are also known as collaborative systems. This course address the intersection between network engineering and the needs of systems architecting and engineering. Prerequisite: Sys Eng 469 or graduate standing. (Co-listed with Sys Eng 419)

443 Wireless Ad hoc and Sensor Networks (LEC 3.0) Introduction to ad hoc and sensor networks, IEEE standards, heterogeneity, quality of service, wireless channel issues, energy awareness, power and topology control, routing, scheduling, rate adaptation, self-organization, admission and flow control, energy harvesting, security and trust levels, hardware and applications. Prerequisite: Comp Eng 348 or Comp Eng 349 or equivalent. (Co-listed with Elec Eng 443 and Sys Eng 447)

448 High Speed Networks (LEC 2.0 and LAB 1.0) A state-of-the-art survey of high-speed networks, modeling and simulation, quality of service (QoS) for multimedia applications and management schemes, TCP congestion control, ATM and Internet traffic management, Internet Service Architecture (ISA), and Internet routing protocols. Prerequisites: Comp Eng 319 and hardware competency for ECE students, Comp Sci 385 for computer science students, or consent of the instructor.

449 Network-Centric Systems Reliability and Security (LEC 3.0) This course presents reliability and fault tolerance for network-centric systems, including models, metrics, and analysis techniques. This course also concentrates on security, including technical tools and methods for audit and assessment as well as management and policy issues. Prerequisite: Sys Eng/Comp Eng 419 or Comp Eng 349. (Co-listed with Sys Eng 449)

457 Markov Decision Processes (LEC 3.0) Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Mech Eng 447, Aero Eng 457, Eng Mgt 457 and Comp Sci 457)

458 Adaptive Critic Designs (LEC 3.0) Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisite: Elec Eng 368 Neural Networks or equivalent (Computational Intelligence

Computer Science Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.
assumes students have an introductory course in database systems. Prerequisites: (Cmp Sc 238 or 274) and Cmp Sc 158.

307 Software Testing And Quality Assurance (LEC 3.0) It covers unit testing, subsystem testing, system testing, object-oriented testing, testing specification, test case management, software quality factors and criteria, software quality requirement analysis and specification, software process improvement, and software total quality management. Prerequisite: Cmp Sc 253.

308 Object-Oriented Analysis And Design (LEC 3.0) This course will explore principles, mechanisms, and methodologies in object-oriented analysis and design. An object-oriented programming language will be used as the vehicle for the exploration. Prerequisite: Cmp Sc 253.

309 Software Requirements Engineering (LEC 3.0) Software Requirements Engineering (SRE) covers all the activities involved in discovering, analyzing, specifying and managing software requirements for a software system from multiple perspectives. Students will study how to elicit, analyze, specify, validate, and manage software requirements using advanced software requirements engineering methods. Prerequisite: Comp Sci 206.

310 Seminar (IND 0.0-6.0) Discussion of current topics. Prerequisite: Senior standing.

311 Bioinformatics (LEC 3.0) The course will familiarize students with the application of computational methods to biology, as viewed from both perspectives. It will introduce problems in molecular, structural, morphological, and biodiversity informatics, and will discuss principles, algorithms, and software to address them. Prerequisites: Bio Sci 110 or 111 and Comp Sci 53/54 or 74/78. (Co-listed with Bio Sci 311)

317 Intellectual Property For Computer Scientists (LEC 3.0) A presentation of the relationship between the law of intellectual property and computer science. Topics include the application of copyright principles to computer programs, protection of computer programs through patents and trade secret law, and the effect of various agreements which are frequently encountered by the computer scientist. Prerequisite: Senior or graduate standing.

362 Security Operations & Program Management (LEC 3.0) An overview of information security operations, access control, risk management, systems and application life cycle management, physical security, business continuity planning, telecommunications security, disaster recovery, software piracy, investigations, ethics and more. There will be extensive reporting, planning and policy writing. Prerequisite: Writing emphasized course AND Operating System course AND Computer Networking course.

328 Object-Oriented Numerical Modeling I (LEC 3.0) A study of object-oriented modeling of the scientific domain. Techniques and methodologies will be developed enabling the student to build a class library of reusable software appropriate for scientific application. Applications will be drawn from mechanics, finance, and engineering. Prerequisites: Comp Sci 228 and Comp Sci 153 and one of Math 208, 203, 229.

329 Object-Oriented Numerical Modeling II (LEC 3.0) A continued study of object-oriented modeling of the scientific domain. Advanced applications include models posed as balance laws, integral equations, and stochastic simulations. Prerequisite: Cmp Sc 328.

356 The Structure Of A Compiler (LEC 3.0) Review of Backus normal form language descriptors and basic parsing concepts. Polish and matrix notation as intermediate forms, and target code representation. Introduction to the basic building blocks of a compiler: syntax scanning, expression translation, symbol table manipulation, code generation, local optimization, and storage allocation. Prerequisites: Cmp Sc 256 and Cmp Sc 253.

358 Interactive Computer Graphics (LEC 3.0) Applications and functional capabilities of current computer graphics systems. Interactive graphics programming including windowing, clipping, segmentation, mathematical modeling, two and three dimensional transformations, data structures, perspective views, anti-aliasing and software design. Prerequisites: Cmp Sc 258 and 253.

347 Introduction To Artificial Intelligence (LEC 3.0) A modern introduction to AI, covering important topics of current interest such as search algorithms, heuristics, game trees, knowledge representation, reasoning, computational intelligence, and machine learning. Students will implement course concepts covering selected AI topics. Prerequisite: Cmp Sc 253.

348 Evolutionary Computing (LEC 3.0) Introduces evolutionary algorithms, a class of stochastic, population-based algorithms inspired by natural evolution theory (e.g., genetic algorithms), capable
of solving complex problems for which other techniques fail. Students will implement course concepts, tackling science, engineering and/or business problems. Prerequisites: Comp Sci 253 and a statistics course.

354 Mathematical Logic I (LEC 3.0) A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy and/or Computer Science. Prerequisite: Philos 15 with junior standing or Math 305 or Comp Sci 253. (Co-listed with Math 354 and Philos 354)

325 Analysis Of Algorithms (LEC 3.0) The purpose of this course is to teach the techniques needed to analyze algorithms. The focus of the presentation is on the practical application of these techniques to such as sorting, backtracking and graph algorithms. Prerequisite: Cmp Sc 253.

366 Regression Analysis (LEC 3.0) Simple linear regression, multiple regression, regression diagnostics, multicollinearity, measures of influence and leverage, model selection techniques, polynomial models, regression with autocorrelated errors, introduction to non-linear regression. Prerequisites: Math 22 and one of Stat 211, 213, 215, 217, or 343. (Co-listed with Stat 346)

378 Introduction To Neural Networks & Applications (LEC 3.0) Introduction to artificial neural network architectures, adaline, madaline, back propagation, BAM, and Hopfield memory, counterpropagation networks, self organizing maps, adaptive resonance theory, are the topics covered. Students experiment with the use of artificial neural networks in engineering through semester projects. Prerequisite: Math 229 or Math 204 or equivalent. (Co-listed with Sys Eng 378, El Eng 368)

381 The Structure Of Operating Systems (LEC 3.0) The hardware and software requirements for operating systems for uniprocessing, multiprogramming, multiprocessing, time sharing, real time and virtual systems. The concepts of supervisors, interrupt handlers, input/output control systems, and memory mapping are discussed in detail. Prerequisite: Cmp Sc 284.

384 Distributed Operating Systems (LEC 3.0) This is a study of modern operating systems, particularly distributed operating systems. Topics include a review of network systems and interprocess communication, causality, distributed state maintenance, failure detection, reconfiguration and recovery, load balancing, distributed file systems, distributed mutual exclusion, and stable property detection including deadlock detection. A group project in Distributed Systems programming will be required. Prerequisites: Cmp Sc 284 and 253.

365 Computer Communications And Networks (LEC 3.0) Network architecture model including physical protocols for data transmission and error detection/correction, data link concepts, LAN protocols, internetworking, reliable end to end service, security, and application services. Students will implement course concepts on an actual computer network. Prerequisites: Cmp Sc 284.

387 Parallel Programming with MPI (LEC 3.0) Parallel computer architectures, network topologies, parallel algorithms, pipelining, message passing, process scheduling and synchronization. Parallel programming with MPI on workstation clusters. Multithreaded programming. Speedup and efficiency issues. Prerequisites: Cmp Sc 284 and Cmp Sc 253.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Does not lead to the preparation of a thesis. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the faculty supervisor.

397 Software Systems Development I (LEC 3.0) Class members will work in small teams to develop a complete software system beginning with end-user interviews and concluding with end-user training. Prerequisites: Comp Sci 206 and 100 credit hours completed.

398 Software Systems Development II (LEC 3.0) This course is an optional continuation of Cmp Sc 397. Those interested in project management should take this course since participants become officers or group leaders in the class "corporation." This course is especially important for those going straight into industry upon graduation. Students with coop experience may find this course redundant. Prerequisite: Cmp Sc 397.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

434 Data Mining & Knowledge Discovery (LEC 3.0) Data mining and knowledge discovery utilizes both classical and new algorithms, such as machine learning and neural networks, to discover previously unknown relationships in data. Key data mining issues to be addressed include knowledge representation and knowledge acquisition (automated learning). Prerequisites: (Comp Sci 338 or 347), and Stat 215. (Co-listed with Comp Engr 404 and Sys Eng 404)

406 Software Engineering II (LEC 3.0) A quantitative approach to measuring costs/productivity in software projects. The material covered will be software metrics used in the life cycle and the student will present topical material. Prerequisite: Cmp Sc 306.

439 Object-Oriented Database Systems (LEC 3.0) This course will include a study of the origins of object oriented database manipulation languages, their evolution, currently available systems, application to the management of data, problem
162 - Computer Science Courses

solving using the technology, and future directions. Prerequisites: Cmp Sc 308 and Database Systems.

410 Seminar (RSD 1.0) Discussion of current topics.

437 Web Data Management And Xml (LEC 3.0) Management of semi-structured data models and XML, query languages such as Xquery, XML indexing, and mapping of XML data to other data models and vice-versa, XML views and schema management, advanced topics include change-detection, web mining and security of XML data. Prerequisite: Comp Sci 338 or equivalent with instructor’s permission.

456 Theory Of Compiling (LEC 3.0) Properties of formal grammars and languages, language-preserving transformations, syntax-directed parsing, classes of parsing methods and the grammars for which they are suited, control flow analysis, and the theoretical framework of local and global program optimization methods. Prerequisite: Cmp Sc 356.

426 Theory Of Computation (LEC 3.0) Turing machines and other machines. Godel numbering and unsolvability results. Machines with restricted memory access and limited computing time. Recursive functions, computable functionals and the classification of unsolvable problems. Prerequisite: Cmp Sc 220.

458 Computer Graphics And Realistic Modeling (LEC 3.0) Algorithms, data structures, software design and strategies used to achieve realism in computer graphics of three-dimensional objects. Application of color, shading, texturing, antialiasing, solid modeling, hidden surface removal and image processing techniques. Prerequisite: Cmp Sc 358.

445 Robotic Sensors And Controls (LEC 3.0) State-of-the-art topics in robotics control and sensory systems. Robotic sensors: position and proximity sensors, touch, force and torque sensors, and robotic vision implementations. Computer control: robotic software tools and techniques and embedded microprocessors. Prerequisite: Cmp Sc 345.

447 Advanced Topics In Artificial Intelligence (LEC 3.0) Objectives of work in artificial intelligence simulation of cognitive behavior and self-organizing systems. Heuristic programming techniques including the use of list processing languages. Survey of examples from representative application areas. The mind-brain problem and the nature of intelligence. Class and individual projects to illustrate basic concepts. Prerequisite: Cmp Sc 347.

448 Advanced Evolutionary Computing (LEC 3.0) Advanced topics in evolutionary algorithms, a class of stochastic, population-based algorithms inspired by natural evolution theory, capable of solving complex problems for which other techniques fail. Students will conduct challenging research projects involving advanced concept implementation, empirical studies, statistical analysis, and paper writing. Prerequisite: Comp Sci 348.

425 Algorithmics II (LEC 3.0) Covers selected classical and recent developments in the design and analysis of algorithms, such as sophisticated data structures, amortized complexity, advanced graph theory, and network flow techniques. Prerequisite: Cmp Sc 325.

457 Markov Decision Processes (LEC 3.0) Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Comp Eng 457, Mech Eng 447, Aero Eng 457 and Eng Mgt 457)

466 Stochastic Modeling (LEC 3.0) The course is in-depth introduction to the basic building blocks of stochastic modeling using the digital computer. Topics include simulation, queueing theory, Markovian decision processes, inventory, and forecasting. Problem analysis, algorithm development and implementation will be covered. Programming project required. Prerequisites: Cmp Sc 360, Stat 215.

463 Computer Security (LEC 3.0) The course presents various vulnerabilities and threats to information in cyberspace and the principles and techniques for preventing and detecting threats, and recovering from attacks. The course deals with various aspects and layers of security: data-level, network-level, system-level, and application-level security. Prerequisites: Cmp Sc 265, Cmp Sc 325.

484 Distributed Systems Theory And Analysis (LEC 3.0) Analysis of the problems of state maintenance and correctness in concurrent computing systems using formal methods such as Hoare Logic, Temporal Logic, and Symbolic Model Checking. Prerequisite: Comp Sci 384.

465 Advanced Topics in Wireless Networks (LEC 3.0) Introduces the fundamentals and recent advances in wireless networking. Coverage includes cellular networks, wireless and mobile ad hoc networks, wireless mesh networks, sensor networks and wireless LANs with a focus on network operation. Special topics selected from the literature on wireless network security will also be addressed. Prerequisite: Comp Sci 365 or equivalent.

467 Mobile And Sensor Data Management (LEC 3.0) Architectures of mobile computing systems; Mobile-IP support in mobile computing systems; location data management, Broadcasting and indexing, replication control; caching, fault tolerance and reliability of mobile systems; adhoc and sensor routing schemes, key management. Prerequisites: Cmp Sc 265.

487 New Trends In Massively Parallel Computing (LEC 3.0) The study of exploiting the potential parallelism of massively parallel computers, state-of-the-art multiprocessor architectures and languages. Topics from current research include design and analysis of efficient parallel algorithms,
task partitioning and load balancing, topological embeddings, and reconfigurable mesh algorithms. Prerequisite: Cmp Sc 387.

490 Research (IND 0.0-16.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Electrical Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Extra High Voltage Engineering (LEC 2.0 and LAB 1.0) The physical phenomena associated with high voltage dielectric breakdown are presented. Methods of generating and measuring high voltages and currents are explained. Demonstration of design and performance. Field trips to companies for laboratory testing of high voltage according to industry standards will serve as the lab part of the course. Prerequisite: Senior standing.

304 Electric Power Quality (LEC 3.0) Definitions and standards of power quality, kinds of power quality problems; sources of sags and transient overvoltages; distribution principles of controlling harmonics, devices for filtering harmonics, time and frequency domain methods of analysis; power quality monitoring; power quality improvement methods. Prerequisite: El Eng 153 - Circuits II.

305 Electric Drive Systems (LEC 3.0) Course content is roughly 1/3 power electronics, 1/3 applied control and 1/3 electric machinery and focuses on analysis, simulation, and control design of electric drive based speed, torque, and position control systems. Prerequisites: El Eng 205 and El Eng 231.

307 Power Systems Engineering (LEC 3.0) Network analysis applied to power systems; the load flow concept; economic operation of power systems; synchronous machine reactances and transient stability; symmetrical components and asymmetrical faults; protective relaying. Prerequisite: El Eng 207.

323 Classical Optics (LEC 3.0) Physical optics and advanced topics in geometrical optics. Topics include ray propagation, electromagnetic propagation, mirrors, lenses, interference, diffraction, polarization, imaging systems, and guided waves. Prerequisites: Math 22 and Physics 24 or 25. (Co-listed with Physics 323)

324 Fourier Optics (LEC 3.0) Applications of Fourier analysis and linear systems theory to optics. Topics include scalar diffraction theory, Fourier transforming properties of lenses, optical information processing, and imaging systems. Prerequisites: El Eng 265 & 271 or Physics 208 & 321. (Co-listed with Physics 324)

325 Optical Computing (LEC 3.0) Introduction to the principles, subsystems, and architectures of optical computing. Topics include characteristics of optical devices; optical implementations of memory, logic elements, and processors; and computational structures. Prerequisite: Comp Eng 111 or equivalent. (Co-listed with Comp Eng 325)

326 Fiber And Integrated Optics (LEC 3.0) Introduction to optical waveguides and their applications to communication and sensing. Topics include dielectric waveguide theory, optical fiber characteristics, integrated optic circuits, coupled-mode theory, optical communication systems, and photonic sensors. Prerequisite: El Eng 271 or Physics 321. (Co-listed with Physics 326)

329 Smart Materials And Sensors (LEC 2.0 and LAB 1.0) Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multidisciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior standing and Math 204. (Co-listed with Ae Eng, E Mech, Mc Eng 329 and Cv Eng 318)

331 Digital Control (LEC 3.0) Analysis and design of digital control systems. Review of ztransforms; root locus and frequency response methods; state space analysis and design techniques; controllability, observability and estimation. Examination of digital control algorithms. Prerequisites: Elec Eng 231.

332 Plantwide Process Control (LEC 3.0) Synthesis of control schemes for continuous and batch chemical plants from concept to implementation. Multiloop control, RGA, SVD, constraint control, multivariable model predictive control, control sequence descriptions. Design project involving a moderately complicated multivariable control

335 Advanced Plc (LEC 2.0 and LAB 1.0) Advanced programmable logic controller (PLC) programming, function block, structured text, function chart, sequencer. Factory communications, system simulation, human-machine interface (HMI) programming. Advanced PID control. Network security and reliability. Class-wide project. Prerequisite: El Eng 235.

337 Neural Networks For Control (LEC 3.0) Introduction to artificial neural networks and various supervised and unsupervised learning techniques. Detailed analysis of some of the neural networks that are used in control and identification of dynamical systems. Applications of neural networks in the area of Control. Case studies and a term project. Prerequisite: Elec Eng 265.

338 Fuzzy Logic Control (LEC 3.0) A mathematical introduction to the analysis, synthesis, and design of control systems using fuzzy sets and fuzzy logic. A study of the fundamentals of fuzzy sets, operations on these sets, and their geometrical interpretations. Methodologies to design fuzzy models and feedback controllers for dynamical systems. Various applications and case studies. Prerequisite: Elec Eng 265.

343 Communications Systems II (LEC 3.0) Random signals and their characterization; noise performance of amplitude, angle and pulse modulation systems; digital data transmission; use of coding for error control. Prerequisite: El Eng 243.

344 Stochastic Signal Analysis I (LEC 3.0) Introduction to the application of probabilistic models to typical electrical engineering problems. Topics include: methods for describing random voltages, random digital signals, correlation, linear mean-square estimation, linear transformation of random digital signals, and bit-error rate calculation for communication systems. Prerequisites: Math 204 and El Eng 153.

345 Digital Image Processing (LEC 3.0) Fundamentals of human perception, sampling and quantization, image transforms, enhancement, restoration, channel and source coding. Prerequisite: El Eng 267. (Co-listed with Cp Eng 345)

347 Machine Vision (LEC 3.0) Image information, image filtering, template matching, histogram transformations, edge detection, boundary detection, region growing and pattern recognition. Complementary laboratory exercises are required. Prerequisites: Comp Eng 111 and preceded or accompanied by Elec Eng 267. (Co-listed with Comp Eng 347)

348 Wireless Networks (LEC 2.0 and LAB 1.0) Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols, wireless LAN, IEEE 802.11, and adhoc and sensor networks. Prerequisites: Hardware competency, Elec Eng 243 or Comp Eng 213 and graduate standing. (Co-listed with Comp Eng 348 and Sys Eng 348)

351 Advanced Electronic Circuits (LEC 3.0) Application of feedback theory, oscillators and frequency standards, precision analog techniques, low-power circuit design, interfacing sensors, designing for high reliability, electronics for harsh environments. Prerequisite: Elec Eng 254.

352 Photovoltaic Systems Engineering (LEC 3.0) Physics and characteristics of photovoltaic (solar) cell technologies, electronic control of alternative energy sources, site selection, array design, energy storage methods, electrical code compliance, stand-alone systems, grid-intertie systems, legal and economic considerations. Prerequisite: Senior or graduate standing in Science or Engineering.

353 Power Electronics (LEC 3.0) Power semiconductor devices in switching mode converter and control circuits, phase-controlled rectifiers, synchronous inverters, AC regulators, cyclo-convertors; self commutated inverters; and frequency changers; thermal analysis and protection. Applications to industry and HVDC. Prerequisite: El Eng 253.

354 Power Electronics Laboratory (LAB 2.0) An introduction to power electronic circuits is presented. Students will construct several dc/dc, dc/ac and ac/dc converters. Various switching algorithms, including pulse width modulation, delta modulation, and hysteresis control will be developed to regulate and control the respective circuits. Prerequisite: Co-requisite Elec Eng 353.

355 High-Frequency Amplifiers (LEC 3.0) Analysis and design of high frequency amplifiers. Topics include parameter conversions, activity and passivity, stability criteria, device operating conditions, Smith chart usage, matching networks, microstrip, scattering parameters, and practical applications. Prerequisites: El Eng 254, 271.

357 Communication Circuits (LEC 3.0) Analysis and design of circuits used in communication systems. Topics include RF semiconductor devices, low-noise amplifiers, mixers, modulators, crystal oscillators,
AGC circuits, highpower RF amplifiers, phase-locked loops, impedance matching, and frequency-selective networks and transformers. Prerequisites: El Eng 254, preceded or accompanied by El Eng 243.

367 Computational Intelligence (LEC 3.0) Introduction to Computational Intelligence (CI), Biological and Artificial Neuron, Neural Networks, Evolutionary Computing, Swarm Intelligence, Artificial Immune Systems, Fuzzy Systems, and Hybrid Systems. CI application case studies covered include digital systems, control, power systems, forecasting, and time-series predictions. Prerequisite: Stat 217. (Co-listed with Comp Eng 358 and Sys Eng 367)

368 Introduction To Neural Networks & Applications (LEC 3.0) Introduction to artificial neural network architectures, adaline, madaline, back propagation, BAM, and Hopfield memory, counterpropagation networks, self organizing maps, adaptive resonance theory, are the topics covered. Students experiment with the use of artificial neural networks in engineering through semester projects. Prerequisite: Math 229 or Math 204 or equivalent. (Co-listed with Sys Eng 378, Cmp Sc 378)

371 Grounding And Shielding (LEC 3.0) Fundamental principles involved in typical grounding and shielding problems, objectives and techniques for grounding and shielding to reduce misconceptions and a more systematic approach to replace “trial and error” methods, interference mechanisms and shielding techniques. Prerequisites: El Eng 265 and 271.

372 Signal Integrity In High-Speed Digital & Mixed Signal Design (LEC 3.0) Signal integrity ensures signals transmitted over a propagation path maintain sufficient fidelity for proper receiver operation. Compromised signal integrity is often associated with parasitics (e.g. unintentional inductance, capacitance). Theory and CAD tools used for signal integrity analysis of functioning designs. Prerequisites: El Eng 271 or Cp Eng 213, and Senior standing. (Co-listed with Cp Eng 372)

373 Antennas And Propagation (LEC 3.0) Propagated fields of elemental dipole, directivity and gain, radiation resistance, the half-wave dipole, wire antennas, arrays, broadband antennas, aperture antennas, horn antennas, and antenna temperature. Prerequisite: El Eng 271.

374 Wave Propagation and Transmission Lines (LEC 3.0) The materials in this course are intended to provide a) follow up electromagnetics related courses, b) electromagnetics related career including RF design and c) a graduate degree in electromagnetic related fields an in-depth understanding of the basics of wave propagation and transmission lines. Prerequisite: Elec Eng 271.

377 Microwave And Millimeter Wave Engineering And Design (LEC 3.0) Introduce senior and graduate students to the concept of microwave an millimeter wave engineering and component design such as waveguide, couplers, detectors, mixers, etc., including network theory and scattering matrix. Finally, their application in various microwave circuits will be discussed. Prerequisites: El Eng 253, 271.

378 Mechatronics (LEC 2.0 and LAB 1.0) This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 279 or equivalent. (Co-listed with Mech Eng 378, Aero Eng 378 and Comp Eng 378)

379 Microwave Principles For Mixed-Signal Design (LEC 3.0) Transmission lines; coupled transmission lines; microwave network analysis; impedance matching and tuning; design of microwave amplifiers and oscillators. Prerequisite: El Eng 271.

382 Teaching Engineering (LEC 3.0) Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mg 370, Env En 382, Cp Eng 382, Cv Eng 382)

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

391 Electrical Engineering Senior Project I (RSD 0.5 and LAB 0.5) A complete design cycle. Working in small teams, students will design, document, analyze, implement and test a product. Topics include: Iteration in design, prototyping, group dynamics, design reviews, making effective presentations, concurrent design, designing for test, ethics and standards, testing and evaluation. Prerequisites: Stat 217, Cp Eng 111, Econom 121 or 122, Sp&M 85, English 160, at least 3 of the following: El Eng 205, El Eng 207, El Eng 265, El Eng 267, El Eng 271, El Eng 254.
392 **Electrical Engineering Senior Project II** (LAB 3.0) A continuation of El Eng 391. Prerequisite: El Eng 391.

400 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

402 **Advanced Theory Of Electric Machines** (LEC 3.0) Energy conversion, reference frame theory, transient and dynamic modeling of ac machines, simulation of ac machines, parameter identification, model-order reduction, advanced topics depending on semester taught. Prerequisite: El Eng 205.

404 **Economic Operation Of Power Systems** (LEC 3.0) Optimum economic loading of thermal plants determined by the method of Lagrange multipliers, derivation of the system loss matrix and its transformation to the most useful basis, practical evaluation of the matrix elements, extension of optimum loading criteria to include system losses, effect of hydro plants on system economics. Prerequisite: El Eng 307.

405 **Power System Protection** (LEC 3.0) Protective relaying incorporating electromechanical, solid state and modern computer relaying methods for high voltage transmission systems. Pilot wire, power line carrier apparatus, bus protection, circuit breaker interruption characteristics, out of step relaying, reclosing, synchronizing, load and frequency relaying. Prerequisite: El Eng 303 and 307.

406 **Power System Stability** (LEC 3.0) Synchronous machine theory and modelling; AC transmission; power system loads; excitation systems; control of active and reactive power; small signal stability; transient stability; voltage stability; mid-term and long-term stability; subsynchronous oscillations; stability improvement. Prerequisite: El Eng 207 or similar course.

407 **Surge Phenomena In Power Systems** (LEC 3.0) Study of transmission system insulation, distributed constant lines, terminations, multiple reflections, lighting performance, characteristics of sustained and switching overvoltages, surge voltages due to system faults, energizing and reclosing of circuit breakers. Methods of reducing overvoltages to acceptable levels. Prerequisite: El Eng 307.

408 **Computer Methods In Power System Analysis** (LEC 3.0) Algorithms for large scale system solution, non-linear systems, ordinary differential equations, eigenvalue problems, modal information, and optimization. Applications to power systems analysis. Prerequisite: Elec Eng 207 or similar course.

409 **Electric and Hybrid Vehicles** (LEC 3.0) This course covers an entire range of topics related to analysis, design, control, and optimization of electric, hybrid, and plug-in hybrid power trains including automotive applications of adjustable speed motor drives, energy storage systems, and advanced power converters. Prerequisite: Elec Eng 305 or Elec Eng 353.

420 **Semiconductor Devices** (LEC 3.0) Properties of semiconductors, junctions and transistors; high frequency and high-current effects; recombination processes; field-effect devices, semiconductor devices and microcircuits. Prerequisite: Graduate status in El Eng.

422 **Integrated Microsystems Engineering** (LEC 1.5 and LAB 1.5) Theory and practice of multidisciplinary integrated microsystem technologies. The topics include (1) micromachining technology, (2) review of mechanical, optical, microfluidic and (bio) chemical microsensors and microactuators, (3) hands-on lab session for design, fabrication, and characterization of microsystems. Prerequisite: Graduate standing.

425 **Electromagnetic Optics** (LEC 3.0) Propagation, control, and modulation of laser radiation. Topics include optical polarization, interference, layered and anisotropic media, electro-optic devices, acousto-optic devices, and nonlinear optics. Prerequisite: El Eng 271 or Physics 321.

429 **Advanced Topics in Optics and Devices** (LEC 3.0) Advanced topics of current interest in optics and devices. Selected topics include semiconductor materials, electronic devices, wave-based sensing, fiber optic systems, optoelectronics, and photonic engineering. Prerequisite: Graduate standing.

431 **Linear Control Systems** (LEC 3.0) Review of linear algebra, state variable formulations, solutions of state equations; controllability and observability; multivariable systems, matrix-fraction decompositions; design of state and output feedback controllers and observers; introduction to calculus of variations; linear quadratic regulators. Prerequisite: El Eng 231.

432 **Optimal Control And Estimation** (LEC 3.0) Review of linear quadratic regulators (LQR), LQR extensions; constrained optimization (Pontryagin’s minimum principle); review of probability theory and random processes; optimal prediction and filters; frequency domain properties of LQR and Kalman filters; linear quadratic Gaussian (LQG) control; model uncertainties, frequency shaping, LQG/LTR design methodology. Prerequisite: El Eng 431.

433 **Current Topics In Control Theory** (LEC 3.0) Topics of current interest in control theory literature. Offered as interest and demand warrant. Prerequisite: Consent of instructor.
434 **Nonlinear Control Systems** (LEC 3.0) Numerical solution methods, describing function analysis, direct and indirect methods of Lyapunov stability, applications to the Lure problem - Popov circle criterion. Applications to system design and feedback linearizations. Prerequisite: El Eng 431.

438 **Robust Control Systems** (LEC 3.0) Performance and robustness of multivariable systems, linear fractional transformations, LQG/LTR advanced loop shaping, Youla parameterization, H (subscript infinity) optimal control, mixed H (subscript 2) and H (subscript infinity) control, controller synthesis for multiple objective optimal control, linear matrix inequalities theory and case studies. Prerequisite: Elec Eng 431.

441 **Digital Signal Processing II** (LEC 3.0) Continuation of El Eng 341. Effects of discrete noise sources in digital signal processing; discrete spectral analysis of random signals; discrete time signal detection, estimation, and filtering algorithms. Prerequisites: El Eng 341 and 343 or 344 or Stat 343.

443 **Wireless Ad hoc and Sensor Networks** (LEC 3.0) Introduction to ad hoc and sensor networks, IEEE standards, heterogeneity, quality of service, wireless channel issues, energy awareness, power and topology control, routing, scheduling, rate adaptation, self-organization, admission and flow control, energy harvesting, security and trust levels, hardware and applications. Prerequisite: Comp Eng 348 or Comp Eng 349 or equivalent. (Co-listed with Comp Eng 443 and Sys Eng 443)

444 **Stochastic Signal Analysis II** (LEC 3.0) Continuous-time stochastic signals, multi-dimensional signals, Wiener and matched filters, LMS equalization, non-linear systems with random inputs, spectral estimation and Markov chains. Prerequisites: Stat 343 or Elec Eng 344.

445 **Statistical Decision Theory** (LEC 3.0) Classical detection and estimation theory with applications; hypothesis testing, detection of known signals, matched filter receiver implementation, detection of signals with unknown parameters, sequential and nonparametric detection, detection of stochastic signals: Parameter estimation theory with application to modulation. Prerequisite: El Eng 344.

447 **Information Theory And Coding** (LEC 3.0) Principles of information generation, transmission and processing; quantitative measure of information, entropy source encoding; channels; mutual information; channel capacity; Shannon's second theorem for discrete channels; introduction to coding for error controls; continuous information sources. Prerequisites: El Eng 343 or El Eng 344 or Stat 343.

448 **Advanced Topics In Communications** (LEC 3.0) Advanced topics of current interest in communications and signal processing such as spread spectrum, digital processing of communications, speech, and radar signals, applications of pattern recognition, communications networks, specialized coding topics. Repeatable for additional credit toward degree each time a different subtitle offered. Prerequisite: El Eng 343 or 344.

455 **Advanced RF & Time Domain Measurements** (LEC 2.0 and LAB 1.0) Advanced measurement techniques and instrumentation: Oscilloscopes (Real time and sampling, A/D conversion errors, Probing, Jitter, Noise), Spectrum analyzer (concepts, applications), Network Analyzer (concepts, calibration), Impedance measurements. Lab experiments are a main part of this class. Prerequisite: Graduate standing.

458 **Adaptive Critic Designs** (LEC 3.0) Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisite: Elec Eng 368 Neural Networks or equivalent (Computational Intelligence Comp Eng 301) (Co-listed with Comp Eng, Mech Eng, Aero Eng and Sys Eng 458)

463 **Passive Network Synthesis** (LEC 3.0) Advanced topics in passive network synthesis. One-port, two-port and n-port network synthesis. Prerequisite: El Eng 363.

473 **Electromagnetic Waves II** (LEC 3.0) Circular waveguides, circular cavities, scattering by cylinders, apertures in cylinders, spherical cavities, orthogonality relationships, source of spherical waves, scattering by spheres, perturbational and variational techniques, microwave networks, probes in cavities, and aperture coupling to cavities. Prerequisite: El Eng 471.

474 **Computational Electromagnetics** (LEC 3.0) Differential-equation based numerical methods-finite element, finite-difference, and finite-difference time-domain-for solving static and dynamic equations of electromagnetics. Applications considered are multi-conductor transmission lines, Maxwell's equations for radiation and scattering, and electric machinery. Prerequisite: El Eng 271.

475 **High-Speed Digital Design** (LEC 3.0) Techniques for designing and building high-speed digital circuits on printed circuit boards or multi-chip modules. Component and package selection, power bus design, decoupling, parasitic elements, grounding, shielding, and high-speed measurement techniques. Prerequisite: El Eng 271.
495 Continuous Registration (IND 1.0) Doctoral students without previous course in engineering economy because of partial overlap.

309 Introduction to the Six Sigma Way (LEC 3.0) This course is an examination of the theory and practice of the breakthrough management strategy known as six sigma (6σ). The role of green and black belts, master black belts and champions will be examined. Prerequisites: Eng Mgt 375 or equivalent.

311 Human Factors (LEC 3.0) An examination of human-machine systems and the characteristics of people that affect system performance. Topics include applied research methods, systems analysis, and the perceptual, cognitive, physical and social strengths and limitations of human beings. The focus is on user-centered design technology, particularly in manufacturing environments. Prerequisite: Psych 50. (Co-listed with Psych 311)

313 Managerial Decision Making (LEC 3.0) Individual and group decision making processes and principles for engineers and technical managers with emphasis on the limitations of human rationality and the roles of social influence and organizational contexts; principles and skills of negotiation. Prerequisite: Senior or graduate standing.

314 Management for Engineers and Scientists (LEC 3.0) The transition of the engineer or scientist to manager; study of management roles and theory, organizational systems and behavior, managing and motivating technical personnel, leadership, communication, processes, and customer focus. Prerequisite: Graduate standing.

320 Technical Entrepreneurship (LEC 3.0) Student teams develop a complete business plan for a company to develop, manufacture and distribute real technical/product service. Lectures & business fundamentals, patents, market/technical forecasting, legal and tax aspects, venture capital, etc., by instructor and successful technical entrepreneurs. Prerequisite: Senior or graduate standing.

322 Accounting For Engineering Management (LEC 3.0) Study of accounting principles, procedures, and the application of accounting principles to management planning, control and decision making. Includes financial statement analysis and cost and budgetary procedures.

324 Fundamentals Of Manufacturing (LEC 2.0 and LAB 1.0) This course provides a comprehensive treatment of topics of concern to the Manufacturing Engineer. The effect of manufacturing processes on product design and cost is discussed, and an introduction to inspection and quality control is presented. Prerequisite: Eng Mgt 253.

327 Legal Environment (LEC 3.0) Study of the effect of the legal environment on the decisions which the engineering manager must make. The course investigates the social forces that produced this environment and the responsibilities incumbent upon the engineer.

Engineering Management Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

308 Economic Decision Analysis (LEC 3.0) Comprehensive treatment of engineering economy including effects of taxation and inflation; sensitivity analysis; decisions with risk and uncertainty; decision trees and expected value, normally includes solutions on personal computer and student problem report. Prerequisite: Graduate
333 Management Information Systems (LEC 3.0)
Study of the operational and managerial information needs of an organization. Emphasis is on the information needed throughout an organization and on information systems to meet those needs. Prerequisite: Senior or graduate standing.

334 Computer Integrated Manufacturing Systems (LEC 2.0 and LAB 1.0)
Study of the design and use of computer-based integrated manufacturing management systems in the allocation and control of plant, equipment, manpower, and materials. Prerequisite: Eng Mgt 253.

344 Interdisciplinary Problems In Manufacturing Automation (LEC 1.0 and LAB 2.0)
Introduction to basic techniques and skills for concurrent engineering, manufacturing strategies, product design, process planning, manufacturing data management and communication are the topics covered. Students experiment the design process through team projects and structured manufacturing laboratory work. (Co-listed with Mc Eng 344, Ch Eng 384)

351 Industrial Marketing Systems Analysis (LEC 3.0)
An analysis of the factors of engineered products, customers, communication, promotion, personal selling, persuasion and management within a dynamic industrial sales environment.

352 Financial Decision Analysis (LEC 3.0)
Understanding the principles and use of accounting standards and systems, financial statements, the time value of money, asset pricing models, sources of funds, financial ratios, dividend and growth policies, and capital structure for financial decision making.

354 Integrated Product And Process Design (LEC 3.0)
Emphasize design policies of concurrent engineering and teamwork, and documenting of design process knowledge. Integration of various product realization activities covering important aspects of a product life cycle such as "customer" needs analysis, concept generation, concept selection, product modeling, process development, DFX strategies, and end-of-product life options. Prerequisite: Eng Mgt 253 or Mc Eng 253. (Co-listed with Mc Eng 357)

356 Industrial System Simulation (LEC 3.0)
Simulation modeling of manufacturing and service operations through the use of computer software for operational analysis and decision making. Prerequisite: Stat 213 or 215.

358 Integrated Product Development (LEC 1.0 and LAB 2.0)
Students in design teams will simulate the industrial concurrent engineering development process. Areas covered will be design, manufacturing, assembly, process quality, cost, supply chain management, and product support. Students will produce a final engineering product at the end of the project. Prerequisite: Eng Mgt 354 or Mech Eng 357 or Mech Eng 253 or Mech Eng 308. (Co-listed with Mech Eng 358)

361 Project Management (LEC 3.0)
Organization structure and staffing; motivation, authority and influence; conflict management; project planning; network systems; pricing, estimating, and cost control; proposal preparation; project information systems; international project management. Prerequisite: Graduate Standing.

364 Value Analysis (LEC 3.0)
An organized effort at analyzing the function of goods or services for the purpose of achieving the basic functions at the lowest overall cost, consistent with achieving the essential characteristics. Covers the basic philosophy, function analysis, FAST diagramming, creativity techniques, evaluation of alternatives, criteria analysis, and value stream mapping. Prerequisite: Senior or graduate standing.

365 Operations Management Science (LEC 3.0)
Application of management science with an emphasis on supporting managerial decision-making. Design and operations of systems are modeled and analyzed using quantitative and qualitative techniques implemented using modern technology. Specific approaches include mathematical modeling and optimization, probabilistic/ statistical analysis, and simulation. Prerequisite: Eng Mgt 253 with at least a "C" or graduate standing.

366 Business Logistics Systems Analysis (LEC 3.0)
An analysis of logistics function as a total system including inventory, transportation, order processing, warehousing, material handling, location of facilities, customer service, and packaging with trade-off and interaction. Prerequisite: Stat 213 or 215.

369 Patent Law (LEC 3.0)
A presentation of the relationship between patent law and technology for students involved with developing and protecting new technology or pursuing a career in patent law. Course includes an intense study of patentability and preparation and prosecution of patent applications. Prerequisite: Senior or graduate standing. (Co-listed with Civ Eng 385, Chem Eng 385)

370 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Env En 382, Cp Eng 382, El Eng 382, Cv Eng 382)

372 Production Planning And Scheduling (LEC 3.0)
Introduction to basic techniques of scheduling, manufacturing planning and control, just-in-time systems, capacity management, master production scheduling, single machine processing, constructive Algorithms for flow-shops, scheduling heuristics, intelligent scheduling systems are the topics covered. Prerequisite: Eng Mgt 282.
170 - Engineering Management Courses

374 **Engineering Design Optimization** (LEC 3.0) This course is an introduction to the theory and practice of optimal design as an element of the engineering design process. The use of optimization as a tool in the various stages of product realization and management of engineering and manufacturing activities is stressed. The course stresses the application of nonlinear programming methods. Prerequisite: Math 204 or 229.

375 **Total Quality Management** (LEC 3.0) Examination of various quality assurance concepts and their integration into a comprehensive quality management system: statistical techniques, FMEA's, design reviews, reliability, vendor qualification, quality audits, customer relations, information systems, organizational relationships, motivation. Prerequisite: Senior or graduate standing.

376 **Introduction To Quality Engineering** (LEC 3.0) This course is an introduction to the theory and practice of quality engineering with particular emphasis on the work of Genichi Taguchi. The application of the quality loss function, signal to noise ratio and orthogonal arrays is considered in-depth for generic technology development; system, product and tolerance design; and manufacturing process design. The emphasis of the course is offline quality control. Other contributions in the field are also considered. Prerequisite: Eng Mg 375.

377 **Introduction To Intelligent Systems** (LEC 3.0) Introduction to the design of intelligent systems. Topics include: definitions of intelligence, rule-based expert systems, uncertainty management, fuzzy logic, fuzzy expert systems, artificial neural networks, genetic algorithms and evolutionary computation, hybrid systems, and data mining. Prerequisite: Graduate or senior standing.

379 **Packaging Machinery** (LEC 3.0) Examination and evaluation of packaging machinery as a subset of the packaging system and its relation to the total production and marketing system. Determination of criteria for selection, design and implementation of packaging machinery and systems into the production facility. Prerequisite: Sr standing in engineering.

380 **Work Design** (LEC 3.0) Addresses the design of workstations and tasks. Topics include micromotion, operational analysis, manual material handling, workstations organization, macroergonomics, anthropometrics, biomechanics, cumulative trauma disorders, handtool design, controls/displays design, work sampling, stopwatch time studies, predetermined time standard systems, and time allowances. Prerequisite: Senior or graduate standing.

381 **Management And Methods In Reliability** (LEC 3.0) Study of basic concepts in reliability as they apply to the efficient operation of industrial systems. Prerequisite: Stat 213 or 215 or 343.

382 **Introduction To Operations Research** (LEC 3.0) Mathematical methods for modeling and analyzing industrial systems, topics including linear programming, transportation models, and network models. Prerequisite: Stat 213 or 215.

383 **Packaging Management** (LEC 3.0) Provides a comprehensive background in the field of packaging and its place in productive systems. Emphasizes the design or economics of the system. Analyzes the management of the packaging function and interrelationship with other functions of an enterprise.

385 **Statistical Process Control** (LEC 3.0) The theoretical basis of statistical process control procedures is studied. Quantitative aspects of SPC implementation are introduced in context along with a review of Deming's principles of quality improvement and a brief introduction to sampling inspection. Prerequisite: Stat 213 or 215.

386 **Safety Engineering Management** (LEC 3.0) This course is an introduction to the principles of safety engineering applied to industrial situations. Job safety analysis, reduction of accident rates, protective equipment, safety rules and regulations, environmental hazards, health hazards, and ergonomic hazards are covered. Prerequisite: Senior or graduate standing.

387 **Experimentation In Engineering Management** (LEC 3.0) The techniques for planning and analyzing industrial experiments are introduced with emphasis on their application to the design, development, and production of quality goods and services. Prerequisite: Stat 213 or Stat 215.

390 **Undergraduate Research** (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor. Consent of instructor required.

400 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

408 **Financial Risk Management** (LEC 3.0) Techniques and methods for managing financial risk, including portfolio theory, Monte Carlo methods, ARIMA, time series forecasting, Value-at-Risk, stress testing, extreme value theory, GARCH and volatility estimation, random variables and probability distributions, real options, decision trees, utility theory, statistical decision techniques, and game theory. Prerequisites: Eng Mgt 308, 352, or equivalent. (Co-listed with Sys Eng 408)

409 **Design for Six Sigma** (LEC 3.0) The course will cover modern design methodology based on the Six Sigma paradigm. Design for Sigma (DFSS) is a roadmap for the development of robust products.

410 **Seminar** (IND 0.0-6.0) Discussion of current topics.
420 Technological Innovation Management (LEC 3.0) Technological innovation is new technology creating new products and services. This course studies the issues of managing technological innovation under four topics: 1) Innovation; 2) New Ventures; 3) Corporate Research & 4) R&D Infrastructure. Prerequisite: Eng Mg 314.

434 Advanced Manufacturing Systems Integration (LEC 2.0 and LAB 1.0) The integration of new technology and information processing concepts for controlling the manufacturing systems. Advanced topics in computer integrated manufacturing systems, industrial robots, CNC machine tools, programmable controllers, material handling systems, manufacturing planning and control.

441 Case Studies In General Management (LEC 3.0) A quantitative study of engineering management problems related to the functioning of the industrial enterprise through case studies. Prerequisite: Preceded or accompanied by an Eng Mg 400 level course.

451 Advanced Marketing Management (LEC 3.0) Study of marketing decision areas in the technically based firm, including product selection and development, marketing research, market development, distribution, advertising, and promotion. Pricing policies including legal aspects and problems in selecting, training and controlling field sales force. Examination of interaction within consumer and industrial marketing environments. Prerequisites: Eng Mg 314, Econ 122.

452 Advanced Financial Management (LEC 3.0) Principles of financial organization and management in the technological enterprise; demands for funds; internal and external supply of funds; budgetary control; reserve and dividends policy. Emphasizes systems approach and problems of engineering design and automation as they influence financial decisions. Prerequisite: Eng Mgt 352.

454 Advanced Production Management (LEC 3.0) Examination of responsibilities of production manager in the technological enterprise for providing finished goods to meet the quality, price, quantity and specification needs of the market place. Study of functions of production manager: Quantitative approach to decision making in production management. Prerequisites: Senior or graduate standing and advanced mathematical modelling competence.

456 Advanced Personnel Management (LEC 3.0) Current practices of procurement and maintenance of technical personnel in research, development, and design organizations. Adaptation of such personnel to the technological enterprise, current practices in personnel administration, labor management relationships. Prerequisite: Eng Mg 314.

457 Markov Decision Processes (LEC 3.0) Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Comp Eng 457, Mech Eng 447, Aero Eng 457 and Comp Sci 457)

458 Case Studies in Project Management (LEC 3.0) Includes the main components of the Project Management Institute (PMI) Body of Knowledge; case studies in project management including project implementation, organizational structures, project estimating, project scheduling, project risk management, and conflict management. Prerequisite: Eng Mgt 361 or equivalent.

460 Advanced Topics in Simulation Modeling (LEC 3.0) Design and analysis of distributed systems using discrete-event simulations and synchronization of distributed models. Design and implementation of finite state automata and simulation models as control execution systems. Functioning of real-time, agent-based, and multipass simulations. Prerequisite: Eng Mgt 356 or Graduate standing.

461 Global Project Management (LEC 3.0) In depth and advanced topics in project management including project management methodologies, strategic planning for excellence, project portfolio management, integrated processes, culture, and behavioral excellence; normally includes a hands-on group project. Prerequisite: Eng Mgt 361 or equivalent.

465 Mathematical Programming (LEC 3.0) An introduction to linear optimization and its engineering applications; problem modeling, search-based optimization, the simplex method for solving linear problems, multi-objective optimization, discrete dynamic programming. Applications of optimization in the fields such as transportation, project management, manufacturing and facility location will be discussed. Prerequisites: Stat 213 or equivalent and (Eng Mg 382 or Math 203 or Math 208) (Co-listed with Math 465)

472 Lean Manufacturing Systems (LEC 3.0) Lean manufacturing is a total enterprise philosophy built on increasing the synergy between humans and technological systems. Use of various concepts such as flow, just-in-time, lead times, inventory turns, standardized work, pull system, value streams, quick changeover, workplace organization, and visual controls are covered to improve system performance. Prerequisites: Graduate standing, and Eng Mg 372 or equivalent.

475 Quality Engineering (LEC 3.0) This course is an examination of the theory and practice of quality engineering with particular emphasis on the work of Genichi Taguchi. The application of the quality loss function, signal to noise ratio and orthogonal arrays is considered indelph for generic technology development; system, product and tolerance design; and manufacturing process design. The emphasis of the course is off-line quality control.
Prerequisites: Eng Mg 375 and Math 229 or equivalent.

476 Advanced Engineering Management Science (LEC 3.0) Solving of managerial problems utilizing management science techniques. Problems are analyzed, modeled and solved using such techniques as linear, goal, dynamic, programming, simulation, statistical analysis or other non-linear methods. Solutions will involve the use of personal or mainframe computers. A study of the current literature in management science will also be conducted. Prerequisite: Eng Mg 382 or graduate standing.

480 Investment (LEC 3.0) An introduction to the theory and practice of investment, including financial markets and instruments, security trading, mutual funds, investment banking, interest rates, risk premiums, the capital asset pricing model, arbitrage pricing theory, market efficiency, bonds and the fixed income market, equity valuation, fundamental and technical analysis. Prerequisites: Eng Mgt 208, 308, 352, or equivalent. (Co-listed with Sys Eng 480)

481 Financial Engineering (LEC 3.0) An introduction to financial engineering, with an emphasis on financial derivatives, including the future markets, the pricing of forwards and futures, forward rate agreements, interest and exchange rate futures, swaps, the options market, option strategies, the binomial and Black-Scholes models for option valuation, the option Greeks, and volatility smiles. Prerequisites: Eng Mgt 308, Eng Mgt 352; Eng Mgt 480 or Sys Eng 480 or equivalent. (Co-listed with Sys Eng 481)

485 Advanced Topics In Quality Assurance (LEC 3.0) Selected topics such as cost analysis, organizational structure, Ishikawa diagrams, Pareto analysis, Taguchi methods and other statistical procedures will be examined with regard to their underlying theoretical basis and problems in application. Prerequisite: Eng Mg 375 or 385 or 387.

489 Advanced Research Methodology In Engineering Management (LEC 3.0) An advanced study of research methodology techniques and theories in conducting research activities. The research problems, hypotheses, literature search, data requirements and analyses, interpretation and presentation of results are examined. Prerequisite: Graduate standing.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Engineering Mechanics Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

324 Engineering Plasticity I (LEC 3.0) The stress-strain relations of materials loaded beyond the elastic range. Yield criteria. Applications to tension, bending, and torsion and their interaction, and to problems with spherical or cylindrical symmetry. Prerequisite: IDE 110.

375 Structural Modal Analysis: Theory And Application (LEC 2.0 and LAB 1.0) A modeling technique for the dynamic behavior of structures. Topics include structural dynamics theory, digital signal processing and instrumentation, modal parameter extraction, vibration simulation and design modification. Hands-on experience with an integrated analysis of the experimental modal testing and the analytical finite element method. Prerequisite: IDE 110 and 150 or Eng Mech 160, Math 203 and 204.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor. Consent of instructor required.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

406 Boundary Methods In Mechanics (LEC 3.0) Discussion of weighted residual methods and development of boundary integral and boundary element concepts with applications to problems in
potential theory, elasticity, plate theory and plasticity with emphasis on solution of steady state and transient problems in potential theory and elasticity. Prerequisite: E Mech 307.

412 Continuum Mechanics (LEC 3.0) Tensorial preliminaries, finite deformation and strain; general kinematics; stress; thermodynamic concepts; constitutive equations, elastic, fluid, plastic, and viscoelastic bodies. Introduction to microcontinuum concepts. Prerequisite: E Mech 311.

427 Viscoelasticity (LEC 3.0) Constitutive equations for viscoelastic materials. Transform techniques. Thermal effects. Applications to special problems. Prerequisites: E Mech 311, Math 309, Math 351 or 357.

462 Theory Of Vibrations II (LEC 3.0) Topics include: continuous systems, Fourier transform solutions, eigenvalue problems, random vibrations, nonlinear vibrations, and impact in continuous systems. Prerequisite: E Mech 361 or Mc Eng 307 or Ae Eng 307.

482 Wave Propagation In Continuous Media II (LEC 3.0) Hyperbolic systems of equations, method of characteristics. Application of these techniques to mechanics; compressible fluids, elasticity, acceleration and shock waves. Nonlinear dispersive waves. Experimental techniques. Prerequisite: E Mech 311.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Environmental Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

360 Environmental Law And Regulations (LEC 3.0) This course provides comprehensive coverage of environmental laws and regulations dealing with air, water, wastewater, and other media. The primary focus is permitting, reporting, and compliance protocols. The course topics include U.S. and international legal systems and judicial processes, liability, enforcement, Clean Air Act, Clean Water Act (NPDES permitting), Safe Drinking Water Act, OSGA, TSCA, RCRA, and CERCLA. Case studies will be emphasized. (Co-listed with Cv Eng 360)

361 Remediation Of Contaminated Groundwater And Soil (LEC 2.0 and LAB 1.0) Course covers current in-situ and ex-situ remediation technologies. Current literature and case studies are utilized to provide the focus for class discussions and projects. Prerequisites: Cv Eng 265, Ge Eng 337 or Graduate Standing. (Co-listed with Cv Eng 361)

362 Public Health Engineering (LEC 3.0) A comprehensive course dealing with the environmental aspects of public health. Prerequisites: Cv Eng 261 with grade of “C” or better. (Co-listed with Cv Eng 362)

363 Solid Waste Management (LEC 3.0) A systematic study of the sources, amounts and characteristics of solid wastes and methods used for their collection, reclamation, and ultimate disposal. Prerequisites: Cv Eng 261 with grade of “C” or better; or graduate standing. (Co-listed with Cv Eng 363)

364 Environmental Systems Modeling (LEC 3.0) Introductory course in modeling environmental systems. Course will focus on contaminant fate and transport in the environment. Models will be developed that will include physical, chemical and biological reactions and processes that impact this fate. Prerequisites: Env En/Cv Eng 261, Env En/Cv
174 - Environmental Engineering Courses

Eng 262 and Env En/ Cv Eng 263; or Graduate standing. (Co-listed with Cv Eng 364)

367 Introduction To Air Pollution (LEC 3.0)
Introduction to the field of air pollution dealing with sources, effects, federal legislation, transport and dispersion and principles of engineering control. Prerequisite: Cv Eng 230 or equivalent; or graduate standing. (Co-listed with Cv Eng 367)

368 Air Pollution Control Methods (LEC 3.0)
Study of the design principles and application of the state-of-the-art control techniques to gaseous and particulate emissions from fossil fuel combustion, industrial and transportation sources. Prerequisite: Cv Eng 230 or equivalent; or graduate standing. (Co-listed with Cv Eng 368)

369 Sanitary Engineering Design (LEC 2.0 and LAB 1.0)
Functional design of water and waste water treatment facilities. Prerequisites: Cv Eng 265 with grade of "C" or better. (Co-listed with Cv Eng 369)

380 Water Resources And Wastewater Engineering (LEC 3.0)
Application of engineering principles to the planning and design of multipurpose projects involving water resources development and wastewater collection/treatment/disposal systems. Latest concepts in engineering analysis are applied to evaluation of alternative solutions. Prerequisites: Cv Eng 233, 235, 265. (Co-listed with Cv Eng 380)

382 Teaching Engineering (LEC 3.0)
Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mg 370, Cp Eng 382, El Eng 382, Cv Eng 382)

390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of the instructor required.

401 Special Topics (Variable 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

410 Seminar (IND 0.0)
Discussion of current topics.

460 Chemical Principles In Environmental Engineering (LEC .0)
The course develops fundamental chemical and physical principles underlying environmental engineering systems including drinking water, groundwater, and wastewater treatment; and natural environmental processes. Topics include adsorption, complex formation, acid-base equilibria, solubility, mass transfer and diffusion, electrochemistry, and chemical kinetics. Prerequisite: Graduate Standing. (Co-listed with Cv Eng 460)

461 Biological Principles In Environmental Engineering Systems (LEC 2.0 and LAB 1.0)
Course covers the fundamental biological and biochemical principles involved in natural and engineered biological systems. (Co-listed with Cv Eng 461)

462 Physicochemical Operations In Environmental Engineering Systems (LEC 3.0)
Course covers physicochemical operations and design in water, wastewater and aqueous hazardous waste treatment systems including coagulation, precipitation, sedimentation, filtration, gas transfer, chemical oxidation and disinfection, adsorption, ion exchange. Prerequisite: Cv Eng 230 or equivalent. (Co-listed with Civ Eng 230 and Chem Eng 470)

463 Biological Operations In Environmental Engineering Systems (LEC 3.0)
Course covers biological operations and design in water, wastewater and aqueous hazardous waste treatment systems including modeling of biological treatment processes; and design of activated sludge systems, trickling filters, rotating biological contractors, lagoons, nitrification and denitrification, and digestion process. Prerequisite: Cv Eng 230 or equivalent. (Co-listed with Cv Eng 463)

464 Industrial And Hazardous Waste Treatment (LEC 2.0 and LAB 1.0)
Course covers fundamentals of industrial and hazardous wastewater treatment systems and characterization including physical, chemical and biological processes and laboratory pilot plant investigations. (Co-listed with Cv Eng 464)

465 Environmental Engineering Analysis Laboratory (LEC 1.0 and LAB 2.0)
Environmental Engineering analytical principles and techniques applied to the quantitative measurement of water, wastewater and natural characteristics, and application of advanced instrumentation methods in Environmental Engineering. Prerequisite: Cv Eng 261 or equivalent, with a grade of "C" or better. (Co-listed with Cv Eng 465)

467 Environmental Chemistry (LEC 2.0 and LAB 1.0)
This course covers the fundamental and applied aspects of environmental chemistry including inorganic, organic, and analytical chemical principles. The course emphasizes the aquatic environmental and covers gas laws and solubility, chemical modeling, equilibria, acid-base and complexation relationships, oxidation and photochemical reactions. Prerequisite: Graduate standing in engineering or science curricula. (Co-listed with Cv Eng 467)

485 Philosophy of Scientific Research (LEC 3.0)
Organization and planning of research. Introduction to the philosophy and management of scientific research, particularly issues related to ethics, plagiarism, ownership of intellectual properties, research techniques, technical presentations and time management. The course will address these
336 Geophysical Field Methods (LEC 2.0 and LAB 1.0) Imaging of selected subsurface and engineering features by various geophysical methods. Special emphasis on ground penetrating radar and magnetic methods; and the acquisition and reduction of associated data. One field trip at student expense required. Prerequisite: Geophysics 285. (Co-listed with Geophysics 336)

337 Geological Aspects Of Hazardous Waste Management (LEC 3.0) Nature and classification of hazardous wastes; federal and state regulation for treatment and disposal; geological characterization of facility sites; design of impoundments, storage and containment facilities; groundwater monitoring and protection; site permitting and licensing planning. Prerequisite: Geology 275.

339 Groundwater Remediation (LEC 3.0) A survey of conventional and innovative techniques for remediation of contaminated groundwater. Topics include groundwater cleanup standards, physico-chemical properties of groundwater and contaminants, fate and transport of contaminants in the subsurface, hydrogeologic site characterization, and selection process of a remedial technology. Various computer programs developed to assist in preliminary selection and design of remediation technologies will be used. Prerequisite: Geology 331.

340 Field Operations In Ground Water Hydrology (LEC 3.0) A survey of ground water field operations. Topics include groundwater exploration, well drilling methods, drilling fluids, well screens, water and monitoring well design, well development and testing, and pumps. A design project will be completed. Prerequisite: Geology 331.

341 Engineering Geology And Geotechnics (LEC 3.0) Study of procedures and techniques used to evaluate geologic factors for site selection and the design of engineered structures. Prerequisite: Geology 275.

342 Military Geology (LEC 3.0) This course will familiarize geologists, geophysicists, civil and geological engineers with the fundamental principles of physical geology, geohydrology and geomorphology as applied to military problems, such as development of fortifications, core infrastructure, water resources and combat engineering requirements. Prerequisite: Geology 275 or graduate standing.

343 Subsurface Exploration (LEC 2.0 and LAB 1.0) Lectures and field and laboratory exercises in the use of geologic and geophysical techniques for evaluation of subsurface geology and resources. Prerequisite: Civil Engineering 215 or Petroleum Engineering 131.

344 Remote Sensing Technology (LEC 2.0 and LAB 1.0) Principles of digital image processing including image enhancement and multispectral classification. Emphasis upon design and implementation of remote sensing systems and analysis of remotely sensed data for geotechnical
and environmental investigations. Prerequisite: Geo Eng 248. (Co-listed with Geology 344)

346 Applications Of Geographic Information Systems (LEC 2.0 and LAB 1.0) Applications of Geographical Information Systems and remote sensing to environmental monitoring, mineral resource exploration, and geotechnical site evaluation. Prerequisite: Geo Eng 275 or consent of instructor. (Co-listed with Geology 346)

349 Computer Applications In Geological Engineering (LEC 3.0) Advanced topics in computer applications including: statistical analysis, geostatistical modeling, groundwater and contaminant transport simulation, computer contouring algorithms, and digital image processing. Emphasis is on understanding the mathematical algorithms and computer implementation as well as the practical application to site investigation, decision making, and modeling projects. Prerequisite: Ge Eng 249.

350 Geological Engineering Design (LEC 2.0 and LAB 1.0) Geological engineering design is an open-ended project course requiring the collection of data, analysis and synthesis of that data and design of a socially acceptable, economical solution to the selected problem. Oral and written reports are required. Prerequisite: To be taken in the semester before graduation.

351 Geological Engineering Case Histories (LEC 3.0) This course presents significant concepts in geological engineering practices by using examples from practical experience to illustrate the objectives. The examples will be drawn from classic case histories as well as the professional experience of the instructor.

352 International Engineering and Design (LEC 3.0) A multi-disciplinary engineering course focused on sustainable design and technology transfer to developing countries. Course includes elements of traditional capstone design classes. Experiential learning through competitions and/or field work is a major component of the class. Prerequisite: Senior standing, instructor approval. (Co-listed with Met Eng 352 and Cer Eng 352)

353 Regional Geological Engineering Problems In North America (LEC 3.0) A physiographic approach to engineering materials and problems. Course emphasizes the distribution and engineering characteristics of soil and rock to construction and site problems and includes aggregates, foundations, excavations, surface and ground water, slope stability and arctic conditions.

361 Transportation Applications of Geophysics (LEC 2.0 and LAB 1.0) Overview of geophysical and non-destructive test methods that are commonly used to investigate transportation structures and their foundations. Emphasis is placed on bridge system substructure, bridge system superstructure, pavements, roadway subsidence, subsurface characterization and vibration measurements. Prerequisite: Junior level standing or higher. (Co-listed with Geophysics 361)

371 Rock Engineering (LEC 3.0) Data requirements for design; engineering properties of rock; characterization of fractures and rock masses; stereonet analysis of discontinuities; graphic analysis of failure; ground stress distribution; tunnel construction methods; ground support principles; selection of tunneling equipment; and specifications for underground construction. Prerequisite: Ge Eng 275.

372 Soil Science In Engineering Practice (LEC 3.0) A study of the ways in which soils and geologic conditions influence engineered projects. Soil formation, soil chemistry and properties to include composition, organic component, ion exchange and water relationships as well as erosion control and revegetation will be covered. Prerequisite: Ge Eng 275.

373 Geologic Field Methods (LAB 3.0) Field practice in geologic mapping and interpretation in the Western United States using topographic base maps and aerial photos. Emphasizes the description and interpretation of stratigraphic sections, sedimentary and tectonic structures. Prerequisite: Two courses in either Geology or Geological Engineering.

374 Engineering Geologic Field Methods (LAB 3.0) Instruction in methods of field investigation required for engineering geological studies. Course will include procedures for interpretative mapping of surficial geologic conditions, site characterization, and evaluation of geologic hazards. Written reports are required. Prerequisite: Geo 373.

376 Environmental Aspects Of Mining (LEC 3.0) Permitting: the legal environment of reclamation and environmental impact assessment; post-mining land-use selection and mine planning for optimum reclamation of all mines: metal, nonmetal, and coal; unit operations of reclamation; drainage, backfill, soil replacement, revegetation, maintenance, etc. Prerequisites: Ge Eng 50; Mi Eng 324 and 326 or prereq./coreq. Cae Eng 219. (Co-listed with Mi Eng 376)

381 Intermediate Subsurface Hydrology And Contaminant Transport Mechs (LEC 3.0) A study of the physical/chemical properties of rocks and sediments in the subsurface environment. Emphasis is put on waterrock properties such as permeability, capillarity, and mechanical dispersion. Both microscopic and macroscopic approaches are used. Prerequisites: Cae Eng 230 & Ge Eng 331.

382 Environmental And Engineering Geophysics (LEC 2.0 and LAB 1.0) An introduction to the theory
and application of the gravity, magnetic, resistivity, self-potential, induced polarization and electromagnetic methods as applied to the solution of engineering and environmental problems. Prerequisite: Math 22. (Co-listed with Geophys 382)

390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

410 Seminar (RSD 1.0)
Discussion of current topics. Prerequisite: Graduate student.

415 Advanced Geostatistics (LEC 3.0)
Data estimation is an important aspect of minerals engineering. This advanced graduate level course studies the application of Geostatistics for data estimation. Such estimation results in unique spatial analyses. Students are encouraged to find spatial analyses of particular interest to each individual. Prerequisite: Ge Eng 315 or equivalent in probability and statistics course 200 level or higher.

431 Advanced Subsurface Hydrology (LEC 3.0)
Advanced treatment of selected topics in subsurface hydrology, including groundwater contamination, contaminant transport, land disposal of wastes, aquifer test analysis, injection well technology, etc. Applied hydrogeologic site analysis and flow and transport modeling through solution of selected case examples. Prerequisite: Ge Eng 331 or equivalent.

432 Numerical Methods In Subsurface Flow (LEC 3.0)
Development of governing balance equations, constitutive laws and mathematical models of groundwater flow and contaminant transport in porous media. Solution of mathematical models by finite difference and finite element methods for various boundary and initial conditions. Prerequisites: Ge Eng 331, Cmp Sc 73.

435 Advanced Concepts Of Environmental Geological Engineering (LEC 3.0)
Application of the principles of geology to the solution of engineering problems in environmental protection and remediation. Topics will include the study of geologic processes and the evaluation of geologic materials as they affect the potential for groundwater contamination, susceptibility of soils to erosion, characterization of the geologic environment for site suitability and the analysis of the criteria necessary for the selection of technologies for minimizing environmental impact. Prerequisite: Graduate level course in environmental geologic studies.

437 Advanced Geological & Geotechnical Design For Hazardous Waste Mgt (LEC 3.0)
Geological and geotechnical design factors for hazardous waste management facilities and remedial actions (cleanup) of uncontrolled hazardous waste sites. Prerequisite: Ge Eng 337 or consent of instructor.

438 Remedial Engineering For Uncontrolled Hazardous Waste Sites (LEC 3.0)
Discussion of remediation technologies for uncontrolled hazardous waste sites applicable to various conditions of site geology, hydrology, and waste characteristics. Discussion will emphasize case histories of previous remediation actions and the design of alternate remediation technologies for an uncontrolled hazardous waste site. Prerequisite: Ge Eng 338.

441 Geotechnical Construction Practice (LEC 3.0)
Advanced level lecture topics on procedures used for site characterization, standards for earthquake grading and construction, including embankments, building pads, retention structures, roads, levees, and earthen dams. Specific emphasis on preparation of documents involved in such work and engineer’s responsibilities. Prerequisite: Geo Eng 341.

446 Advanced Remote Sensing And Image Processing (LEC 2.0 and LAB 1.0)
Quantitative methods of utilizing remote sensing technology for terrain analysis. Digital image processing of landsat and/or aircraft scanner data for mineral resource studies and geological engineering applications. Prerequisite: Geo Eng 346. (Co-listed with Geology 446)

477 Discontinuous Rock (LEC 3.0)
Nature and properties of discontinuous rock masses, genesis and properties of joints, role of joints in rock shear strength, slope of stability of jointed rock, fracture flow hydrogeology. Modeling of the mechanical behavior of fractured rock. Prerequisite: Mi Eng 231 or Ge Eng 371.

490 Research (IND 0.0-15.0)
Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

491 Internship (IND 0.0-15.0)
Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

493 Oral Examination (IND 0.0)
After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or
faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Geology Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

305 Hydrogeology (LEC 3.0) This course discusses geologic aspects of major surface and subsurface hydrologic systems of North America. Chemical and physical relationships between groundwater and fractures, karst, subsurface pressures, mineral deposits plus both contaminant and hydrocarbon migration are discussed. Prerequisites: Ge Eng 50 or Geo 51, Geo 223 recommended.

307 Physical Oceanography (LEC 3.0) An introduction to the study of the physical and geological processes in the world's oceans including the importance of the oceans to the environment and to life on Earth. Prerequisite: Geology 325 or equivalent.

308 Astronomy and Planetary Science (LEC 3.0) Basic principles of astronomy, the origin and evolution of the universe, stellar evolution, and the origin, composition, and processes operating on the planetary bodies in the solar system (besides the Earth). Prerequisite: Entrance requirements for the MST program in Earth Science.

309 Meteorology and Climatology (LEC 3.0) An introduction to the atmospheric and climatic systems of the Earth including weather, paleoclimatology, and global climate change. Prerequisite: Geology 325 or equivalent.

310 Seminar (RSD 0.0-6.0) Discussion of current topics. Required for two semesters during senior year. (Course cannot be used for graduate credit). Prerequisite: Senior standing. (Co-listed with Geo Eng 310, Pet Eng 310)

312 Ore Microscopy (LEC 1.0 and LAB 2.0) A study of polished sections of minerals and ores under reflected light. Includes the preparation of polished sections, the identification of ore minerals, and the study of the textures, associations, and alterations of ore minerals. Prerequisite: Geo 113.

324 Advanced Stratigraphy And Basin Evolution (LEC 3.0) Advanced topics in sedimentary geology including: tectonic controls on sedimentary basin development, global sequence stratigraphy, regional facies and diagenetic patterns, basin hydrogeology, thermal evolution of basins and distribution of economic resources. Prerequisites: Geo 223, 220, preceded or accompanied by Geo 275 recommended.

325 Advanced Physical Geology (LEC 3.0) History and materials of the Earth's crust, structures and geological features of the surface. Study of common minerals and rocks, topographic and geologic maps, depositional systems, sedimentary classification systems. Prerequisite: Consent of instructor.

326 Advanced Historical Geology (LEC 2.0 and LAB 1.0) Study of the physical and biological history of the Earth beginning with the origin of the solar system up to the present. Emphasis will be placed on processes that shaped the Earth and its ecosystems. Prerequisite: Entrance requirements for the MST program in Earth Science.

329 Micropaleontology (LEC 2.0 and LAB 1.0) Introduction to the preparation and study of microscopic fossils. Prerequisite: Geo 227.

330 Granites And Rhyolites (LEC 3.0 and LAB 1.0) Processes governing the generation and crystallization of felsic magma will be covered, with specific reference to: 1) crust vs mantle sources, 2) melt migration and emplacement, 3) magma chamber dynamics, 4) the volcanic-plutonic connection, and 5) the relationship to tectonic setting. A field trip at the student's expense is required. Prerequisite: Geo 130.

332 Depositional Systems (LEC 3.0) Development of three dimensional depositional models using Walther's Law, Walther's Warning and seismic stratigraphy. Emphasis on overall geometries and internal porosity and permeability characteristics of aquifers and hydrocarbon reservoirs. Includes 3-D models for clastic, carbonate and evaporate sequences. Prerequisite: Geology 51 or Geo Eng 50.

334 Advanced Igneous and Metamorphic Petrology (LEC 3.0 and LAB 1.0) Processes governing the formation of igneous and metamorphic rocks as constrained by geochemical, isotopic, and thermodynamic data, with particular reference to the relationship between rock suites and tectonic setting. The laboratory will emphasize the description of rock suites in hand sample and thin section. A field trip at the student's expense is required. Prerequisite: Geology 130.

338 Computer Mapping In Geology (LEC 2.0 and LAB 1.0) This course introduces the basics of both surface and subsurface geologic mapping. It introduces procedures and problems associated with digitizing, gridding, contouring, volumetrics and generation of three dimensional diagrams on the PC. Integration of field gathered data with USGS and GSI databases for the purpose of making surface geologic maps is also included. Prerequisite: Geo 51.
340 Petroleum Geology (LEC 2.0 and LAB 1.0) Principles of origin, migration, and accumulation of oil and gas. The laboratory introduces the procedures used for exploration, and development of hydrocarbon resources. Prerequisite: Geology 51 or Geo Eng 50 (Introductory Geology course)

341 Applied Petroleum Geology (LEC 1.0 and LAB 2.0) The principles of petroleum geology are applied in solving hydrocarbon exploration and developmental problems. Geological and economical techniques for evaluating hydrocarbon-bearing reservoirs are presented, with methods for decisionmaking under conditions of extreme uncertainty. Prerequisite: Geo 340.

344 Remote Sensing Technology (LEC 2.0 and LAB 1.0) Principles of digital image processing including image enhancement and multispectral classification. Emphasis upon design and implementation of remote sensing systems and analysis of remotely sensed data for geotechnical and environmental investigations. Prerequisite: Ge Eng 248. (Co-listed with Ge Eng 344)

345 Radioactive Waste Management And Remediation (LEC 3.0) Sources and classes of radioactive waste, long-term decay, spent fuel storage, transport, disposal options, regulatory control, materials issues, site selection and geologic characterization, containment, design and monitoring requirements, domestic and foreign waste disposal programs, economic and environmental issues; history of disposal actions, and conduct of remedial actions and cleanup. Prerequisite: Math 204. (Co-listed with Nu Eng 345)

346 Applications Of Geographic Information Systems (LEC 2.0 and LAB 1.0) Applications of Geographical Information Systems and remote sensing to environmental monitoring, mineral resource exploration, and geotechnical site evaluation. Prerequisite: Geo Eng 275 or consent of instructor. (Co-listed with Geo Eng 346)

350 Paleoclimatology and Paleoecology (LEC 3.0) This course will introduce students to the elements of climate, evidence of climate changes, proxy measurements and paleoclimate models. There is a review of Holocene climates and Archean to Pleistocene paleoclimates. Prerequisite: Geology 52.

372 Geological Field Studies (LEC 3.0) Intensive review of the scientific literature corresponding to a selected geographical region of geologic interest; followed by a 7 to 10 day long field trip to be held over spring break or after the end of the semester. Students will be expected to bear a portion of the field trip expenses. Repeatable for credit. Prerequisites: Geology 51 or Geo Eng 50.

373 Field Geology (LAB 3.0) Field practice in geologic mapping and interpretation in the Western United States using topographic base maps and aerial photos. Emphasizes the description and interpretation of stratigraphic sections, sedimentary and tectonic structures. Prerequisite: Two Geology courses.

374 Advanced Field Geology (LAB 3.0) Detailed field work in areas related to the projects of Geology 373. Courses to be taken the same summer. A written report on the full summer’s projects is required. Prerequisite: Geo 373.

375 Applied Geochemistry (LEC 2.0 and LAB 1.0) Application of the principles of geochemistry and techniques of geochemical analysis in a student research project investigating geochemical processes (mineral deposits; environmental geochemistry, trace element migration, or water-rock interaction). Field trip fee required. Prerequisites: Geo 113 and Geo 275.

376 Aqueous Geochemistry (LEC 3.0) Studies of the interaction of water with minerals and organic materials at low temperatures; including processes affecting the migration of elements (alteration, precipitation, and adsorption), the influence of geochemical processes on water composition, weathering, soil formation, and pollution. Prerequisite: Geo 275.

378 Isotope Geochemistry (LEC 2.0 and LAB 1.0) Introduction to the fundamentals of radiogenic and stable isotopes as used to understand geologic processes. The use of selected isotopic systems in petrology, ore petrogenesis, paleontology, and the global climate systems will be discussed. Prerequisites: Geology 130, 223, 275.

383 Electrical Methods In Geophysics (LEC 3.0) The theory and instrumentation for measurements of the electrical properties of the earth. Includes passive and active techniques, the advantages and disadvantages of the various techniques, and geologic interpretations of electrical soundings. Several weekends are spent making a variety of electrical surveys of local features. Prerequisites: Math 325 and Geop 321.

384 Gravity And Magnetic Methods (LEC 3.0) The theory of gravity and magnetic surveying for geologic bodies of economic interest. Includes methods for the calculation of size and depth of bodies with different degrees of magnetization and density. Prerequisites: Math 325 and Geop 321.

386 Wave Propagation (LEC 3.0) A study of Hamilton's principle and energy theorems, fundamentals of plane wave theory, waves in stratified fluids, elastic waves in solids, electromagnetic and hydromagnetic radiation, and Allens's functions and point sources. Prerequisites: Geop 286 and 321.

387 Acquisition Of Seismic Data (LEC 2.0 and LAB 1.0) Theory and application of the acquisition of seismic data. Determination of recording and energy source array responses, evaluation of energy sources, and the design of a complete acquisition system. Prerequisite: Geop 286 and 380 or permission of instructor.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who
wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

394 **Coal Petrology** (LEC 3.0) Formation, composition, and properties of coals. Discussion of the geology of selected coal deposits, the analysis of coal, and the optical identification of coal minerals. Prerequisite: Permission of instructor.

400 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

405 **Geology of Natural Resources** (LEC 3.0) The origin and distribution of economically important natural resources including soils, water resources, metals, non-metals, building materials, petroleum, and other energy resources. Prerequisites: Geology 325 and 326 or equivalents.

407 **Environmental Geology** (LEC 3.0) Overview of environmental problems facing humans. Emphasis will be placed on surface and groundwater pollution, geological hazards, and pressures on Earth’s ecosystems and natural resources by urbanization and population growth. Prerequisites: Geology 325 and 326 or equivalents.

410 **Seminar** (RSD 0.0-6.0) Discussion of current topics.

411 **Advanced Mineralogy** (LEC 2.0 and LAB 1.0) A study of selected mineralogy topics. Emphasis will vary with class interest. Current topics include crystallography, composition of ashflow tuffs, and mineralogy of wall-rock alteration.

412 **Advanced Ore Microscopy** (LEC 1.0 and LAB 2.0) A study of ore suites utilizing various advanced, quantitative ore microscopy techniques including hardness, spectral reflectance, indentation, color, rotation property measurements, fluid inclusion geothermometry, and salinity measurements. Laboratory study includes demonstration and operation of the luminoscope and other microbeam techniques. Prerequisite: Geology 312.

413 **Clay Mineralogy** (LEC 2.0 and LAB 1.0) Mineral structure, geochemical properties, occurrence, environment, and uses of clays. Determination of physical properties, optics, x-ray diffraction, and thermal features of clays. Field trip fee required. Prerequisites: Geo 113 and 275, or Chem 237, or CV Eng 315, or Ge Eng 372.

423 **Sedimentary Basin Analysis** (LEC 3.0) An advanced study of stratigraphic, diagenetic and tectonic processes in sedimentary basins. Prerequisites: Geo 220, 223, 275 or 375 or 376.

430 **Advanced Petrology Of The Metamorphic Rocks** (LEC 2.0 and LAB 1.0) Survey of metamorphic processes and the interpretation of metamorphism from field and laboratory studies. Discussion of recent ideas and techniques in the study of metamorphic rocks. Prerequisite: Geo 234.

431 **Clastic Sedimentary Petrology** (LEC 2.0 and LAB 1.0) Petrology and petrography of clastic sedimentary rocks. Emphasis on origin, diagenesis and description of clastic, sedimentary rocks. Prerequisite: Geo 223.

432 **Carbonate Petrology** (LEC 2.0 and LAB 1.0) Petrology, chemistry and sedimentology of carbonates and other associated chemical sedimentary rocks. Prerequisites: Geo 130, 114, 223 and Chem 3 or equivalent Geo 275 recommended.

433 **Advanced Igneous Petrology** (LEC 2.0 and LAB 1.0) The genesis of eruptive rocks as evidenced by the physicalchemical conditions of formation of their constituent minerals. A critical examination of various magmatic processes. Use of advanced petrographic techniques. Prerequisite: Geo 234.

435 **Applied Ore Microscopy** (LEC 1.0 and LAB 2.0) Application of ore microscopic and petrographic techniques to problems in ore beneficiation, pelletting, sintering, smelting, refining, refractories, cement, mining, and exploration. Discussions and laboratories are based upon industrial case histories. Prerequisite: Geo 312.

437 **Advanced Palynology** (LEC 1.0 and LAB 2.0) Study of the processes of sporopollenin preservation, sedimentation and palynofacies. Major emphasis on independent palynostratigraphic research. Chronicle of Phanerozoic palynology in lectures. Prerequisite: Geology 227 or 329.

440 **Advanced Geochemistry** (LEC 3.0) A study of the absolute and relative abundance of elements and isotopes in the Earth, principles of element transport, formation of the Earth’s crust, mineral deposits, and soils. Field trip fee required. Prerequisite: Geo 275.

443 **Advanced Petroleum Geology** (LEC 1.0 and LAB 2.0) Examples of various types of oil and gas accumulation are reviewed in detail. Study of criteria useful in evaluating the petroleum potential of undrilled areas. Special investigation assignment is required. Prerequisite: Geo 340.

446 **Advanced Remote Sensing And Image Processing** (LEC 2.0 and LAB 1.0) Quantitative methods of utilizing remote sensing technology for terrain analysis. Digital image processing of landsat and/or aircraft scanner data for mineral resource studies and geological engineering applications. Prerequisite: Geo Eng 346. (Co-listed with Geo Eng 446)

470 **Field and Laboratory Studies in Earth Science** (LAB 3.0) Hands-on laboratory and field experiences in the Earth Sciences. This course is designed to be taught in an intensive three week session during the summer on the UMR campus. Prerequisites: Geology 325 and 326 or equivalents, and at least one additional course in the MST Earth Science program.

475 **Mining Geology** (LEC 2.0 and LAB 1.0) Application of geology, geochemistry, and geophysics in exploration for exposed and hidden mineral
490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit and must take the examination. In no case shall be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Geophysics Courses

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

321 Potential Field Theory (LEC 3.0) The mathematics and physics of gravitational, magnetic, and electrical fields of the earth as derived from potential functions, with applications to practical problems. The theorems of Laplace, Poisson, Gauss, and Green and their applications to geophysics are presented. Prerequisite: Accompanied or preceded by Math 325.

336 Geophysical Field Methods (LEC 2.0 and LAB 1.0) Imaging of selected subsurface and engineering features by various geophysical methods. Special emphasis on ground penetrating radar and magnetic methods; and the acquisition and reduction of associated data. One field trip at student expense required. Prerequisite: Geophys 285. (Co-listed with Geo Eng 336)

361 Transportation Applications of Geophysics (LEC 2.0 and LAB 1.0) Overview of geophysical and non-destructive test methods that are commonly used to investigate transportation structures and their foundations. Emphasis is placed on bridge system substructure, pavement structure, roadway subsidence, subsurface characterization and vibration measurements. Prerequisite: Junior level standing or higher. (Co-listed with Geo Eng 361)

377 Seismic Interpretation (LEC 1.0 and LAB 2.0) An introduction to 2-D/3-D seismic structural interpretation, stratigraphic interpretation, reservoir identification and evaluation, and horizon and formation attributes. The students are expected to master interactive 2-D/3-D seismic interpretation software packages that are routinely used in the petroleum industry. Prerequisite: Geophys 270 or 385.

380 Seismic Stratigraphy (LEC 2.0 and LAB 1.0) A study of the seismic expression of depositional models. Reflection patterns and reflection amplitudes are interpreted to determine bed thicknesses, fluid content, depositional environment, and lithology. Special data acquisition and processing techniques are examined. Prerequisites: Geop 385, Geo 220, 223.

381 Global Tectonics (LEC 3.0) An integrated view of the Earth's structure and dynamics with an emphasis on information gained through geophysical methods. Topics include seismology, heat flow, gravity, rheological and compositional structure, plate motions and intermotions, and mantle driving mechanisms for plate tectonics. Prerequisite: Geo 220.
182 - Geophysics Courses

382 Environmental And Engineering Geophysics (LEC 2.0 and LAB 1.0) An introduction to the theory and application of the gravity, magnetic, resistivity, self-potential, induced polarization and electromagnetic methods as applied to the solution of engineering and environmental problems. Prerequisite: Math 22. (Co-listed with Geo Eng 382)

383 Electrical Methods In Geophysics (LEC 2.0 and LAB 1.0) The theory and instrumentation for measurements of the electrical properties of the earth. Includes passive and active techniques, the advantages and disadvantages of the various techniques, and geologic interpretations of electrical soundings. Several weekends are spent making a variety of electrical surveys of local features. Prerequisites: Math 325 and Geop 285 or Geop 382.

385 Exploration And Development Seismology (LEC 2.0 and LAB 1.0) Principles of reflection seismology as applied to the delineation of geologic structures and the determination of stratigraphy and lithology. Emphasis on both the capabilities and limitations of the seismic method. The laboratory utilizes both modeled and actual seismic data. Prerequisite: Math 22.

386 Wave Propagation (LEC 3.0) A study of Hamilton's principle and energy theorems, fundamentals of plane wave theory, waves in stratified fluids, elastic waves in solids, electromagnetic and hydromagnetic radiation, and Allen's functions and point sources. Prerequisites: Geop 281, 321.

387 Acquisition Of Seismic Data (LEC 2.0 and LAB 1.0) Theory and application of the acquisition of seismic data. Determination of recording and energy source array responses, evaluation of energy sources, and the design of a complete acquisition system. Prerequisites: Geop 286, 380.

388 Geophysical Instrumentation (LAB 1.0) Field and laboratory practice in the use of geophysical instrumentation. Techniques of geophysical data reduction and interpretation are also covered. May be taken more than once for credit with Geop 383 and Geop 384. Prerequisite: Concurrent registration in Geop 382, 283 or 384.

389 Seismic Data Processing (LEC 2.0 and LAB 1.0) Introduction to seismic data processing. Topics to be covered include statics corrections, filtering, velocity analysis, deconvolution, stacking and migration. Prerequisites: Math 22, and Geop 285 or Geop 385.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

410 Seminar (RSD 0.0-6.0) Discussion of current topics.

483 Advanced Electrical And Electromagnetic Methods In Geophysical Exp (LEC 2.0 and LAB 1.0) Theory of the electrical geophysical methods as applied to subsurface investigations addressing geologic, engineering, groundwater and contaminant transport problems. Course content includes both passive and active methods and recent advances in the application of these methods. Course will include a field component illustrating application of techniques to local problems. Prerequisites: Geop 382, Math 22.

485 Advanced Seismic Data Processing (LEC 2.0 and LAB 1.0) Theory and application of seismic data processing. Topics to be covered include convolution, correlation, deconvolution, 2-D filtering, migration and inversion. Prerequisites: Geop 385, 389, Stat 215.

486 The Theory Of Elastic Waves (LEC 2.0 and LAB 1.0) A mathematical study of elastic waves in the layered earth. Prerequisite: Geop 386.

487 Geophysical Inverse Theory (LEC 3.0) A study of inverse theory applied to geophysical data, focusing on the relationship between data and model spaces and ways to estimate model parameters via global and local optimization techniques. Prerequisites: Geop 286 or 384, Math 325, Stat 215.

488 Advanced Seismic Interpretation (LEC 1.0 and LAB 2.0) The integration of geologic information, well log data and seismic information for interpreting the earth's subsurface. The role of data acquisition and processing is emphasized. Laboratory exercises provide experience with both real and modeled data. Prerequisite: Geop 380, 385.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate...
the candidacy. Billing will be automatic as will registration upon payment.

Information Science and Technology Courses

300 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

302 **Internship - IST** (IND 0.0-6.0) Internship will involve students applying critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student's background and the setting. Prerequisite: Completed 30 hours toward degree.

321 **Network Performance Design And Management** (LEC 3.0) This course provides analytical capabilities needed to effectively design, deploy, and manage computer networks and protocols. Prerequisite: IST 233 or IST 336.

336 **Foundations of Internet Computing** (LEC 3.0) Computer Networks provide the basic transport foundation for Internet Computing. They are covered thoroughly (LANs, WANs, packet switching, protocols, etc.). Design principles and processes for Web sites, e-commerce considerations, site usability issues, wireless communications, and security considerations are also covered. Prerequisite: Approved MS entrance requirements in IST.

342 **E-Commerce Architecture** (LEC 3.0) Course will cover the issues associated with computer architecture, as it relates specifically to e-commerce applications. Topics will include e-commerce systems and processes, specialized software, and databases. Prerequisite: IST 233 or IST 336.

343 **Database Applications in Business** (LEC 3.0) Design, development and implementation of application software typical to the modern business environment utilizing popular commercial database management systems such as Oracle and Access. Focus given to business case modeling, requirement analysis, database design, and implementation challenges. Project oriented. Prerequisite: IST 243.

351 **Leadership In Technology-Based Organizations** (LEC 3.0) The course focuses on the knowledge and skills necessary for the development and implementation of effective strategies for the management of technology-based organizations. This involves: developing a general management perspective on technology and innovation, examining the problems of new product development, identifying distinctive technological competencies, licensing and marketing technologies, assessing the organizational and industrial context of technology. Prerequisite: Senior or Graduate Standing.

352 **Advanced Web Development** (LEC 3.0) Advanced Web development techniques to provide dynamic interaction; methods for extracting and delivering dynamic information to/from Web servers -- a hands-on approach. Interaction with other Web servers, especially database servers, to obtain and deliver information. Project work is required. Prerequisite: IST 286.

353 **Modular Software Systems in Java** (LEC 3.0) Introduction to Software Life Cycle and characteristics of large modular software systems. Exploration of software support for such systems, using Java, including use of GUI features, advanced I/O and String handling, Interfaces, Threads and other modularity features. Program project included. Prerequisite: IST 151 and IST 231.

354 **Multi-Media Development And Design** (LEC 3.0) Students will learn current practices for development and design of interactive multimedia. The course covers tools for development of 2-D and 3-D graphics, video, audio, animation, and integrated multimedia environments. Prerequisites: IST 51, Cmp Sc 53 or Cmp Sc 73.

357 **Network Economy** (LEC 3.0) The course takes a look at the emerging Network/Internet economy, using traditional economic tools. Topics include production and reproduction cost of information, information as an "experience good," creation of different version of products, switching cost and lock-in affects, market adoption of dynamics, first-mover advantage, and intellectual property rights. Prerequisite: Econ 221. (Co-listed with Econ 357)

361 **Information Systems Project Management** (LEC 3.0) The course overviews general project management principles and then focuses on information system application development. Topics include requirements analysis, project scheduling, risk management, quality assurance, testing, and team coordination. Prerequisite: Senior or Graduate Standing.

368 **Law and Ethics in E-Commerce** (LEC 3.0) Provides the ethical framework to analyze the ethical, legal, and social issues that arise for citizens and computer professionals regarding the computerization of society. Topics include: free speech, privacy, intellectual property, product liability, and professional responsibility. Prerequisite: Any intro level Philosophy course. (Co-listed with Philos 368)

385 **Human Computer Interaction** (LEC 3.0) Introduction to the field of Human-Computer Interaction (HCl). Students examine issues and challenges related to the interaction between people and technology. The class explores the social and cognitive characteristics of people who use information systems. Students learn techniques for
understanding user needs, interface prototyping, and interface evaluation. Prerequisite: Psych 50.

386 Human-Computer Interaction Prototyping (LEC 1.5 and LAB 1.5) This course covers designs, methods and tools for creating low and high fidelity prototypes of information technology systems, which is part of the iterative design cycle commonly used for the creation of usable information technologies. Prerequisites: IST 286 or web design experience; preceded or accompanied by IST 385.

387 Human-Computer Interaction Evaluation (LEC 1.5 and LAB 1.5) This course covers research and analysis methods and tools for evaluation of the impact of information technology systems on humans and organizations. The focus will be on practical evaluation with the goal of providing recommendations for improving system functionality and usability. Prerequisite: Preceded or accompanied by IST 385.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This is designed to give the department an opportunity to test a new course. Variable title.

435 Mobile Data Management and Applications (LEC 3.0) This course will describe and evaluate various wireless transmission techniques, communication network components and their characteristics, networking protocols, and network architectures. Appraise their use in existing and evolving applications, along with the management implications of such use. Prerequisite: Graduate standing.

443 Information Retrieval and Analysis (LEC 3.0) Covers the applications and theoretical foundations of organizing and analyzing information of textual resources. Topics include information storage and retrieval systems, web search engines, text mining, collaborative filtering, recommender systems. Students will also learn the techniques with the use of interactive tools such as SAS. Prerequisite: IST 345.

444 Essentials of Data Warehouses (LEC 3.0) This course presents the topic of data warehouses and the value to the organization. It takes the student from the database platform to structuring a data warehouse environment. Focus is placed on simplicity and addressing the user community needs. Prerequisite: IST 223 or Comp Sci 304 or equivalent relational database experience.

445 Database Marketing (LEC 3.0) Intro to methods and concepts used in database marketing: 1) predictive modeling techniques (e.g., regression, decision trees, cluster analysis) and 2) standard processes for mapping business objectives to data mining goals to produce a deployable marketing model. Metrics like lifetime value of a customer and ROI will be covered. Several application areas covered. Prerequisite: Statistics understanding, programming understanding, familiarity with spreadsheets.

448 Building the Data Warehouse (LEC 3.0) Data modeling and processes needed to populate a data warehouse; tradeoffs among several models and tools; technical issues that are faced, such as security, schemas, Web access, other reporting techniques. Prerequisite: IST 444.

480 Web and New Media Studies (LEC 3.0) The course examines web and new-media technologies from a socio-psychological perspective. The class will focus on recent innovations, integrating these approaches into class interaction and student projects. Prerequisite: Graduate standing.

487 Research Methods in Human-Computer Interaction (LEC 1.5 and LAB 1.5) This course covers research within the area of human-computer interaction. The course will cover techniques and tools for carrying out literature reviews, forming research goals, designing appropriate research methodology, conducting data analyses, and preparing manuscripts and presentations of findings. Prerequisite: IST 387.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculty. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (LEC 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Materials Science and Engineering Courses

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.
325 Materials Selection in Mechanical Design (LEC 3.0) This course will introduce the basics of materials selection in mechanical design. It will also introduce the benefits of computational materials and process selection. The students will also learn to use a commercially available materials selection software. This course will be offered as Distance Ed. Prerequisite: Met Eng 121.

341 Tissue Engineering I (LEC 3.0) The course will introduce senior undergraduate students to the principles and clinical applications of tissue engineering including the use of biomaterials scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. Prerequisite: Senior standing. (Co-listed with Bio Sci 341)

347 Advanced Phase Equilibria (LEC 3.0) Advanced aspects of unary, binary and ternary organic, phase equilibria. Includes practical examples of the applications of phase diagrams to solve engineering problems. Prerequisite: Graduate standing.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

410 Seminar (RSD 0.0-6.0) (Variable) Discussion of current topics.

421 Bonding, Crystallography, and Structure-Property Relationships (LEC 3.0) Principles of electronic structure and chemical bonding in solids and their relationships to electrical, mechanical, thermal, and optical properties. An exploration of reciprocal lattices and tensor properties of crystals; consideration of the impact of crystal symmetry on anisotropy. The influence of defects and grain boundary phenomena on material behavior. Prerequisite: Graduate standing, or undergraduate standing with instructor and advisor approval.

422 Thermodynamics and Phase Equilibria (LEC 3.0) Classical thermodynamic treatment of materials and material processing based on the 1st and 2nd Laws of Thermodynamics and phase equilibria considerations. The course will cover equilibria in gaseous systems, gas-solid reactions including passive and active oxidation, solution thermodynamics, phase equilibria in solution systems, and electrochemistry. Prerequisite: Graduate standing, or undergraduate standing with instructor and advisor approval.

423 Kinetic Theory for Materials (LEC 3.0) Phenomenological and atomistic theories of diffusion in materials including discussion of short circuit diffusion and ionic diffusion in an electric field. Fundamentals of phase transformation in materials; chemical fluctuation, nucleation and growth theory; kinetic models for evaluating and predicting diffusion controlled transformation kinetics. Prerequisite: Graduate standing, or undergraduate standing with instructor and advisor approval.

441 Tissue Engineering II (LEC 3.0) The course will introduce graduate students to the principles and clinical applications of tissue engineering including the use of biomaterials, scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. A related topic term paper and oral presentation are expected. Prerequisite: Graduate standing. (Co-listed with Bio Sci 441)

448 Advanced Energy Materials (LEC 3.0) The objectives of the graduate level course are to review the recent developments on advanced energy materials and systems in addition to basic understanding how chemical and physical properties of materials can lead to energy alternatives. Prerequisite: Graduate standing.

490 Research (IND 0.0-15.0) (Variable) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

491 Internship (IND 0.0-15.0) (Variable) Students working toward a doctor of engineering degree will select with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

493 Oral Examination (IND 0.0) (Variable) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D students may be processed during intersession. Off-campus M.S. students must be enrolled in an oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.
Mathematics Courses

300 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

302 **Intermediate Differential Equations** (LEC 3.0) Linear differential equations, vector-matrix systems, existence and uniqueness theory, nonlinear systems, phase-plane analysis, introduction to stability theory. Prerequisite: Math 204 or Math 229.

303 **Mathematical Modeling** (LEC 3.0) Model construction and the modeling process, model fitting, models requiring optimization, empirical model construction, modeling dynamic behavior. Individual and team projects. Prerequisites: Math 204 or 229 with a grade of "C" or better. Programming competency.

305 **Modern Algebra I** (LEC 3.0) The abstract concepts of a group and a ring are introduced. Permutation groups, subgroups, homomorphisms, ideals, ring homomorphisms and polynomial rings are studied. Prerequisite: Math 209.

306 **Modern Algebra II** (LEC 3.0) This course is a continuation of Math 305. Rings and fields are discussed. Euclidean domains, principal ideal domains, unique factorization domains, vector spaces, finite fields and field extensions are studied. Prerequisite: Math 305.

307 **Combinatorics And Graph Theory** (LEC 3.0) Covers some basics of enumeration and graph theory. Topics are selected from the following: permutations combinations, the inclusion/exclusion principle, generating functions, recurrence relations, trees, networks, graph connectivity and graph coloring. Prerequisite: Cmp Sc 158 or Math 209.

308 **Linear Algebra II** (LEC 3.0) Eigenvalue problems, Cayley-Hamilton theorem, Jordan normal form, linear functionals, bilinear forms, quadratic forms, orthogonal and unitary transformations, selected applications of linear algebra. Prerequisite: Math 208.

309 **Advanced Calculus I** (LEC 3.0) Completeness of the set of real numbers, sequences and series of real numbers, limits, continuity and differentiability, uniform convergence, Taylor series, Heine-Borel theorem, Riemann integral, fundamental theorem of calculus, Cauchy-Riemann integral. Prerequisite: Math 209 or a 300-level mathematics course or graduate standing.

310 **Undergraduate Seminar** (Variable 1.0-3.0) Discussion of advanced or current topics. (Course cannot be used for graduate credit)

311 **Advanced Calculus II** (LEC 3.0) Euclidean n-space, differentiation and integration of scalar functions of several variables, maxima and minima theory, change of variables, differentiation and integration of vector functions of several variables, Divergence theorem, Stokes' theorem. Prerequisite: Math 309.

315 **Introduction To Real Analysis** (LEC 3.0) Riemann-Stieltjes integration, sequences and series of functions, uniform approximation, the Banach Space C(a,b), Lebesgue measure and integration, the space LP(a,b), Fourier series. Prerequisite: Math 309.

322 **Vector And Tensor Analysis** (LEC 3.0) Vector algebra, vector differential and integral calculus, line and surface integrals, theorems of Stokes and Gauss, tensor algebra and tensor analysis, applications to problems in kinematics, elasticity theory, fluid mechanics, electromagnetic theory, relativity theory. Prerequisite: Math 22; Math 203 or Math 208.

325 **Partial Differential Equations** (LEC 3.0) Linear equations, heat equation, eigenfunction expansions, Green's formula, inhomogeneous problems, Fourier series, wave equation. Prerequisite: Math 204 with a grade of "C" or better.

330 **Topics In Geometry** (LEC 3.0) A survey of non-Euclidean geometries, finite geometries, affine and projective planes, metric postulates for the Euclidean plane, and selected topics. Prerequisite: Math 208.

337 **Financial Mathematics** (LEC 3.0) The course objective is to provide an understanding of the fundamental concepts of financial mathematics. Topics include pricing, assets-liability management, capital budgeting, valuing cash flow, bonds, futures, swaps, options. Preparation for the financial mathematics actuarial exam will be provided. Prerequisites: Math 15 or Math 21, Econ 221 or Econ 222 or Econ 250 or Econ 321, Stat 211 or Stat 213 or Stat 215 or Stat 217 or Stat 343. (Co-listed with Econ 337)

340 **Mathematical Analysis For Secondary Teachers** (LEC 3.0) Designed to help teachers gain a deeper understanding of the fundamental idea in analysis, that of a limit. A discovery method is used which includes both individual and group work. Students will present their results in written and oral format. Prerequisite: Math 22 or equivalent.

341 **Mathematical Analysis For Secondary Teachers Practicum** (LEC 1.0) An instructional unit based on the discovery method used in Math 340 will be designed by each student. These units will be class tested. The unit and results of class testing will be presented both in written and oral format. Prerequisite: Math 340.

351 **Introduction To Complex Variables** (LEC 3.0) The basic tools of complex variables are studied. These include the Cauchy-Riemann equations, complex contour integration, the Cauchy-Goursat theorem, conformal mappings, the calculus of residues and applications to boundary value problems. Prerequisite: Math 204.
354 Mathematical Logic I (LEC 3.0) A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 15 with junior standing or Math 305 or Comp Sci 253 or Comp Eng 111. (Co-listed with Comp Eng 354, Comp Sci 354 and Philos 354)

361 Problem Solving In Pure Mathematics (LEC 1.0) Problems from pure mathematics, including analysis, algebra, number theory, set theory, finite mathematics, probability and statistics. Emphasis on identifying or inventing ways to solve problems based on the student's entire mathematics background. Prerequisites: Corequisite Math 309 and Senior standing.

371 Problem Solving In Applied Mathematics (LEC 1.0) Problems from applied mathematics which are open-ended, and do not always have a unique correct solution. Emphasis on developing mathematical models and writing solution narratives, including clarity, analysis, and design. Prerequisites: Math 209 and Senior standing.

381 Great Theorems In Mathematics (LEC 1.0) A study of some of the great theorems which have shaped the development of mathematics and human civilization. History, the changing nature of mathematics, and the mathematical content of the theorems themselves, will all be addressed. Sources as close to the originals as possible will be used. Prerequisites: Math 209 and Senior standing.

383 Operational Calculus (LEC 3.0) The Laplace transformation, properties of the transformation, various applications to ordinary and partial differential equations, systems with step and Dirac functions as driving forces, various non-elementary functions and their transforms, problems in heat conduction and wave motion, Fourier transforms and their operational properties. Prerequisite: Math 204.

385 Introduction To Topology (LEC 3.0) Metric spaces; general topological spaces; connectedness, compactness, separation properties, functions and continuity. Prerequisite: Math 309.

390 Undergraduate Research (IND 0.0-6.0) This course is designed for the undergraduate student who wishes to engage in research. It is not to be used for graduate credit nor for more than six credit hours of undergraduate credit. The subject and credit are to be arranged with the instructor. Prerequisite: Consent of instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

402 Mathematical Physics I (LEC 3.0) Vector spaces, generalized coordinate transformations, vector analysis, tensors, partial differential equations in physics and boundary value problems, orthogonal functions and solutions to ordinary differential equations, hypergeometric, confluent hypergeometric, Legendre, Laguerre, and Bessel functions, Hermite polynomials, Green's functions in one dimension.

403 Mathematical Physics II (LEC 3.0) Green's functions in three dimensions, integral equations, complex variable theory and contour integration, group theory with applications to quantum mechanics, solid state and molecular physics. Prerequisite: Math 402 or equivalent.

405 Finite Fields And Applications (LEC 3.0) After reviewing basic group theory and introducing basic properties of commutative rings, the main focus of the course will be on topics such as structure of finite fields, polynomials over finite fields, and applications such as coding theory and cryptography. Prerequisite: Math 305.

406 Introduction to Ring Theory (LEC 3.0) Properties of rings with an emphasis on commutative rings. Ideals, factor rings, ring homomorphisms, polynomial rings; factorization, divisibility, and irreducibility. Introduction to extension fields and Galois theory. Applications may be chosen based on the interests of the students. Prerequisite: Math 305.

407 Group Theory (LEC 3.0) Groups, subgroups, and factor groups; homomorphisms, isomorphisms, and associated theorems; abelian groups; Sylow theorems and p-groups; permutation groups; free groups and generators; representation theory; cohomology theory. Prerequisite: Math 306.

408 Applied Matrix Theory (LEC 3.0) A second course in matrix theory directed toward applications. Linear spaces, linear operators, equivalence and similarity, spectral theorem, canonical forms, congruence, inertia theorem, quadratic forms, singular value decomposition and other factorizations, generalized inverses. Applications to optimization, differential equations, stability. Prerequisites: Math 203, 208, or 302.

410 Graduate Seminar (RSD 1.0-3.0) Discussion of topics of current interest. Prerequisite: Graduate standing.

415 Functions Of A Real Variable I (LEC 3.0) Measure spaces, extensions of measures, probability spaces, measures and distributions in normed linear spaces, product measures, independence, integral and expectation, convergence theorems, Radon-Nikodym theorem and applications. Lp spaces, selected topics. Prerequisite: Math 315.

416 Functions Of A Real Variable II (LEC 3.0) Abstract measures and integrals, the Daniell integration theory, integration on locally compact Hausdorff spaces, integration in function spaces, selected topics. Prerequisite: Must be preceded by Math 415.
417 **Functional Analysis I** (LEC 3.0) Linear transformations, Hahn-Banach theorem, open-mapping theorem, closed graph theorem, uniform boundedness theorem, self adjoint and normal operators, and related topics of Banach and Hilbert space theory. Prerequisites: Math 315 and (Math 308 or Math 385).

418 **Functional Analysis II** (LEC 3.0) Spectral analysis of linear operators, spectral theorems, selected applications, an introduction to the theory of topological linear spaces, and papers from the recent literature. Prerequisites: Math 415 and 417.

426 **Green’s Function Structures And Methods For Application** (LEC 3.0) Continuation of Math 425. Theory of distributions (Dirac Delta function) and Green’s functions. Applications in the solution of boundary value problems for linear partial differential equations arising in physical applications. Integral equations in several independent variables. Method of characteristics in solving partial differential equations. Prerequisite: Math 425.

432 **Calculus Of Variations I** (LEC 3.0) Linear spaces, linear operators, and functionals, necessary conditions, transversality, corner conditions, Hamilton-Jacobi theory, direct methods, eigenvalue problems, isoperimetric problems, theory of the second variation, differential forms and n-dimensional manifolds, applications to differential equations, conservation laws, dynamic programming, and Pontryagin maximum principle, application in physics, engineering economics. Prerequisite: Math 311.

436 **Calculus Of Variations II** (LEC 3.0) Continuation of Math 435. Prerequisite: Must be preceded by Math 435.

437 **Financial Mathematics II** (LEC 3.0) Continuation of Math 337. Topics include martingales and measures, stopping times, discrete and continuous time finance, Brownian motion, Ito calculus, stochastic differential equations, Black-Scholes-Merton formula, numerical procedures. Prerequisite: Math 337 or Econ 337.

440 **Geometric Structures** (LEC 3.0) Selected topics in non-Euclidean, solid, projective, and fractal geometry. Prerequisite: Math 330.

441 **Geometric Structures Practicum** (LEC 1.0) An instructional unit based on material learned in Math 440 will be designed by each student. These units will be class tested. The unit and results of class testing will be presented both in written and oral format. Prerequisite: Math 440.

451 **Functions Of A Complex Variable I** (LEC 3.0) Complex plane, complex function theory, elementary Riemann surfaces, conformal mapping, complex integration, infinite complex series and sequences, calculus of residues with applications. Prerequisite: Math 311.

452 **Functions Of A Complex Variable II** (LEC 3.0) Argument principle and consequences; harmonic functions and Dirichlet's problem; infinite products; entire, meromorphic and rational functions; analytic continuation; symmetry principle; conformal mapping; functions of several complex variables. Prerequisite: Preceded by Math 451.

461 **Introduction To Abstract Harmonic Analysis I** (LEC 3.0) Topological groups, linear spaces, group representation theory, permutation groups, rotation groups, Lorentz groups, Haar integral, Banach algebras, C*-algebra, examples in physics. Prerequisites: Math 305 and 385.

462 **Introduction To Abstract Harmonic Analysis II** (LEC 3.0) Continuation of Math 461. Prerequisite: Must be preceded by Math 461.

465 **Mathematical Programming** (LEC 3.0) An introduction to linear optimization and its engineering applications; problem modeling, search-based optimization, the simplex method for solving linear problems, multi-objective optimization, discrete dynamic programming. Applications of optimization in the fields such as transportation, project management, manufacturing and facility location will be discussed. Prerequisites: Stat 213 or equivalent and (Eng Mg 382 or Math 203 or Math 208). (Co-listed with Eng Mgt 465)

475 **Theory Of Partial Differential Equations** (LEC 3.0) Classical wave, potential, and heat equations; classification into elliptic, parabolic, and hyperbolic types; existence and uniqueness proofs. Prerequisite: Math 309.

483 **Special Functions** (LEC 3.0) Infinite products, gamma and beta functions, asymptotic series, the hypergeometric function, generalized hypergeometric functions, Bessel functions, generating functions; polynomials of legendre, Hermite, Laguerre, and Jacobi; elliptic functions, theta functions, Jacobian elliptic functions. Prerequisites: Math 309 and 351.

485 **Topology I** (LEC 3.0) Topological spaces, uniform and quasi-uniform spaces, product and quotient
spaces, separation properties and connected spaces, compactness. Prerequisite: Math 385.

486 Topology II (LEC 3.0) Metrizability conditions, the theory of convergence using both filters and nets, completions and compactifications, and papers from the recent literature. Prerequisite: Math 485.

487 Rings Of Real, Continuous Functions I (LEC 3.0) Rings of real, continuous functions on topological spaces, ideals and z-filters, completely regular spaces, ordered residue class rings, Stone-Cech compactification. Prerequisites: Math 305 and Math 385.

488 Rings Of Real, Continuous Functions II (LEC 3.0) Continuation of Math 487. Real compact spaces, homomorphisms and continuous mappings, hyper-real fields, prime ideals, topics from current research. Prerequisite: Math 487.

490 Research (IND 0.0-15.0) Investigation of an advanced nature leading to the preparation of a thesis or dissertation.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense /comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Mechanical Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

304 Compliant Mechanism Design (LEC 3.0) Introduction to compliant mechanisms; review of rigid-body mechanism analysis and synthesis methods; synthesis of planar mechanisms with force/energy constraints using graphical and analytical methods; pseudo-rigid-body models; force-deflection relationships; compliant mechanism synthesis methods; and special topics, e.g. bistable mechanisms, constant-force mechanisms, parallel mechanisms, and chain algorithm in design. Emphasis will be on applying the assimilated knowledge through a project on compliant mechanisms design. Prerequisites: Mech Eng 213, IDE 110.

305 Lubrication (LEC 3.0) Development of basic principles of bearing analysis including manufacture and properties of lubricants, hydrodynamics and hydrostatic lubrication, journal and thrust bearings, ball and roller bearings, boundary considerations, and bearing materials. Prerequisite: Mc Eng 231.

306 Material Processing By High-Pressure Water Jet (LEC 3.0) Methods of generating high pressure water jets; standard equipment, existing techniques, and basic calculations. Application of water jets to materials cutting and mineral processing. Safety rules. The course will be supported by laboratory demonstrations. Prerequisite: Mc Eng 231 or undergraduate fluids course. (Co-listed with Mi Eng 306)

307 Vibrations I (LEC 3.0) Equations of motion, free and forced vibration of single degree of freedom systems and multidegree of freedom systems. Natural frequencies, resonance, modes of vibration and energy dissipation are studies. The vibration of continuous systems is introduced. Prerequisites: Mc Eng 211 and 213, or Ae Eng 213 and Math 204. (Co-listed with E Mech 361, Ae Eng 307)

308 Rapid Product Design And Optimization (LEC 3.0) Product life cycle design; Finding design solutions using optimization technique; Rapid product realization using rapid prototyping and virtual prototyping techniques. Prerequisite: Mc Eng 208.

309 Engineering Acoustics I (LEC 3.0) Introduction to acoustical theory and measurement with emphasis on mechanical and aerospace engineering applications. Plane and spherical wave propagation, resonators and filters, absorption, room acoustics, human response to noise, noise legislation, noise control. Use of common instrumentation in several projects. Prerequisites: Mc Eng 211 and 213, or Ae Eng 213 and Math 204. (Co-listed with Ae Eng 309)

311 Introduction To Continuum Mechanics (LEC 3.0) Introductory cartesian tensor analysis to aid in the development of the theory of a continuum. Kinematics of deformation, stress tensor, equations of motion, equations of mass and energy balance. Examples from specific material theories in solid and fluid mechanics. Prerequisites: IDE 110, Math 204. (Co-listed with Eng Mech 311)

312 Finite Element Approximation I--An Introduction (LEC 3.0) Variational statement of a problem. Galerkin Approximation, finite element basis functions and calculations, element assembly, solution of equations, boundary conditions, interpretation of the approximation solution, development of a finite element program, two-
Dimensional problems. Prerequisite: Math 204. (Co-listed with E Mech 307, Ae Eng 352)

313 Intermediate Dynamics Of Mechanical And Aerospace Systems (LEC 3.0) Principles of dynamics are applied to problems in the design of mechanical and aerospace systems; basic concepts in kinematics and dynamics; dynamics of systems of particles; dynamics of rigid bodies, three-dimensional effects in machine elements; dynamic stability, theory and applications; methods of analytical dynamics. Prerequisite: Mc Eng 213 or Ae Eng 213. (Co-listed with Ae Eng 313)

314 Applications Of Numerical Methods To Mechanics Problems (LEC 3.0) Numerical solutions of statics, vibrations, and stability problems. Direct stiffness formulations are developed and user-oriented computer codes are used to solve practical structures problems. Computer graphics techniques are utilized to prepare data and display results. Prerequisites: IDE 110; Mech Eng 160 or Aero Eng 160.

315 Concurrent Engineering I (LEC 3.0) Students will be introduced to the concurrent engineering approach to product development. They will learn to set up quantitative requirements and then use a quantitative rating process to identify the critical requirements relating to the desired product. The interaction between design, manufacturing, assembly, cost, and supportability will be covered. The students will form teams and practice the concurrent engineering process for simple products. Prerequisites: Mech Eng 213 or Aero Eng 231, and IDE 110. (Co-listed with Aero Eng 315)

316 Concurrent Engineering II (LAB 3.0) Students will form groups and then using the electronic data based approach apply the concurrent engineering process to develop products. Areas to be covered are the customer, design, manufacturing, assembly, cost and supportability. Prerequisite: Ae Eng 315 or Mc Eng 315. (Co-listed with Ae Eng 316)

319 Advanced Thermodynamics (LEC 3.0) After a short review of classical thermodynamics, the elements of chemical reactions, chemical equilibrium, statistical thermodynamics, and the basic concepts of kinetic theory are presented. Prerequisite: Mc Eng 221. (Co-listed with Ae Eng 319)

320 Advanced Mechanics of Materials (LEC 3.0) Comprehensive insight into mechanics of materials. Topics to include: theories of failure, torsion of noncircular sections, shear flow and shear center, unsymmetric bending, bending of curved members, beams on elastic foundation and pressurization of thick walled cylinders. Prerequisites: IDE 110, Math 204. (Co-listed with Aero Eng 320)

322 Introduction To Solid Mechanics (LEC 3.0) Review of basic concepts in continuum mechanics. Finite elasticity: some universal solutions for isotropic materials, application of special mechanical models. Linear elasticity: compatibility, stress functions, superposition, special examples such as extension, torsion, bending, and plane problems. Elements of plasticity. Prerequisite: E Mech 311. (Co-listed with Ae Eng 322, E Mech 322)

323 Transport Phenomena In Manufacturing Processes (LEC 3.0) A study of the important role that transport phenomena (heat and mass transfer and fluid flow) play during various manufacturing processes including metal casting, joining and welding extrusion, forging, crystal growth, chemical deposition, and thermal spray deposition. Prerequisites: Mc Eng 225 and 231.

325 Intermediate Heat Transfer (LEC 3.0) Analytical study of conduction; theory of thermal radiation and applications; energy and momentum equations in convective heat transfer and review of empirical relations. Current topics are included. Prerequisite: Mc Eng 225. (Co-listed with Ae Eng 325)

327 Combustion Processes (LEC 3.0) Application of chemical, thermodynamic, and gas dynamic principles to the combustion of solid, liquid, and gaseous fuels. Includes stoichiometry, thermochemistry, reaction mechanism, reaction velocity, temperature levels, and combustion waves. Prerequisite: Mc Eng 221. (Co-listed with Ae Eng 327)

329 Smart Materials And Sensors (LEC 2.0 and LAB 1.0) Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multi-disciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior standing and Math 204. (Co-listed with Ae Eng, E Mech, El Eng 329 and Cv Eng 318)

331 Thermofluid Mechanics II (LEC 3.0) Derivation of Navier-Stokes equations, exact solutions of some simple flows. Superposition methods for inviscid flows. Intermediate treatment of boundary layer theory, and gas dynamics. Introduction to turbulence and kinetic theory. Prerequisite: Mc Eng 231 or Ae Eng 231. (Co-listed with Ae Eng 331)

333 Internal Combustion Engines (LEC 3.0) A course dealing primarily with spark ignition and compression ignition engines. Topics include: thermodynamics, air and fuel metering, emissions and their control, performance, fuels, and matching engine and load. Significant lecture material drawn from current publications. Prerequisite: Mc Eng 221.

334 Stability Of Engineering Structures (LEC 3.0) Solution of stability problems with applications to columns, plates and shell structures. Torsional and lateral buckling of columns. Buckling under high temperatures. Effect of imperfections introduced by a technological process on stability. Design issues related to stability requirements. Prerequisites:
336 **Fracture Mechanics** *(LEC 3.0)* Linear elastic and plastic mathematical models for stresses around cracks; concepts of stress intensity; strain energy release rates; correlation of models with experiment; determination of plane stress and plane strain parameters; application to design. Prerequisite: IDE 110. (Co-listed with Eng Mech 334, Aero Eng 336)

337 **Atmospheric Science** *(LEC 3.0)* An introductory survey designed to acquaint engineering and science students with the fundamentals of Atmospheric Science. Topics include atmospheric thermodynamics, synoptic scale disturbances, atmospheric aerosols (including cloud and precipitation physics), atmospheric electricity, and radiative transfer. Prerequisites: Mc Eng 221 or 227, or Ch Eng 141, or Chem 241, or Physics 311. (Co-listed with Physics 337)

338 **Fatigue Analysis** *(LEC 3.0)* The mechanism of fatigue, fatigue strength of metals, fracture mechanics, influence of stress conditions on fatigue strength, stress concentrations, surface treatment effects, corrosion fatigue and fretting corrosion, fatigue of joints, components and structures, design to prevent fatigue. Prerequisite: IDE 110. (Co-listed with Eng Mech 337, Aero Eng 344)

339 **Computational Fluid Dynamics** *(LEC 3.0)* Introduction to the numerical solution of the Navier-Stokes equations, by finite difference methods, in both stream function-vorticity and primitive variable formulations. Course format emphasizes student development of complete computer programs utilizing a variety of solution methods. Prerequisites: Comp Sci 53 or 73 or 74; one course in fluid mechanics. (Co-listed with Ae Eng 339)

341 **Experimental Stress Analysis I** *(LEC 2.0 and LAB 1.0)* Acquaints the student with some techniques of experimental stress analysis. Principal stresses, strain to stress conversion, mechanical and optical strain gages, electrical resistance strain gages, transducers, and brittle coatings. Prerequisite: IDE 110. (Co-listed with Eng Mech 341, Aero Eng 341)

342 **Experimental Stress Analysis II** *(LEC 2.0 and LAB 1.0)* Acquaints the student with some techniques of experimental stress analysis. Topics include principal stresses, strain to stress conversion, transmission and reflection photoelastic methods, Moire fringe methods, and analogies. Prerequisites: IDE 110, Eng Mech 321. (Co-listed with Eng Mech 342, Aero Eng 342)

343 **Photographic Systems For Engineering Applications** *(LEC 2.0 and LAB 1.0)* Study of photographic techniques applied to engineering uses including observations of events, recording and storage of data, and communication and dissemination of information. Both conventional and special photo-optical systems are covered. Prerequisite: Senior standing. (Co-listed with Ae Eng 343)

344 **Interdisciplinary Problems In Manufacturing Automation** *(LEC 2.0 and LAB 1.0)* The course will cover material necessary to design a product and the fixtures required to manufacture the product. Participants will gain experience with CAD/CAM software while carrying out an actual manufacturing design project. (Co-listed with Ch Eng 384, Eng Mg 344)

345 **Non-Intrusive Measurement Methods** *(LEC 2.0 and LAB 1.0)* Introduction to measurement methods useful to a mechanical engineer. Emphasis is placed on radiation measurement methods, including the effects of various sources and detectors. Prerequisite: Senior standing.

349 **Robotic Manipulators And Mechanisms** *(LEC 2.0 and LAB 1.0)* Overview of industrial applications, manipulator systems and geometry. Manipulator kinematics; hand location, velocity and acceleration. Basic formulation of manipulator dynamics and control. Introduction to machine vision. Projects include robot programming, vision-aided inspection and guidance, and system integration. Prerequisites: Cmp Sc 73, Mc Eng 213. (Co-listed with Ae Eng 349)

351 **Intermediate Aerospace Structures** *(LEC 3.0)* Discussion of the finite element method for static and dynamic analysis of complex aerospace structures. Solution of basic problems using established finite element computer programs. Prerequisite: Ae Eng 253 or Mc Eng 212. (Co-listed with Ae Eng 351)

353 **Computer Numerical Control Of Manufacturing Processes** *(LEC 2.0 and LAB 1.0)* Fundamental theory and application of computer numerical controlled machine tools from the viewpoint of design principles, machine structural elements, control systems, and programming. Projects include manual and computer assisted part programming and machining. Prerequisite: Mc Eng 253.

354 **Variational Formulations Of Mechanics Problems** *(LEC 3.0)* Introduction and study of variational problems in classical dynamics and solid mechanics emphasizing the concepts of virtual work, minimum potential energy, and complementary energy. Variational inequalities. Prerequisites: IDE 110; Math 204; and IDE 150 or Mech Eng 160 or Aero Eng 160. (Co-listed with Eng Mech 354)

355 **Automation In Manufacturing** *(LEC 3.0)* Manufacturing automation at the workstation level. Topics include kinematic and geometric error modeling of manufacturing workstations, control system hardware, servomechanism modeling and control, CNC programming, dynamic simulation, PLCs and PCs, industrial robotics modeling and control, and manufacturing systems analysis. Prerequisites: Mc Eng 253 and Mc Eng 279.
192 - Mechanical Engineering Courses

356 **Design For Manufacture** (LEC 3.0) Course covers the approach of concurrent product and process design. Topics include: principle of DFM, New product design process, process capabilities and limitations, Taguchi method, tolerancing and system design, design for assembly and AI techniques for DFM. Prerequisites: Mc Eng 208, Mc Eng 253.

357 **Integrated Product And Process Design** (LEC 3.0) Emphasize design policies of concurrent engineering and teamwork, and documenting of design process knowledge. Integration of various product realization activities covering important aspects of a product life cycle such as "customer" needs analysis, concept generation, concept selection, product modeling, process development, DFX strategies, and end-of-product life options. Prerequisite: Mech Eng 282 or Mc Eng 253. (Co-listed with Eng Mgt 354)

358 **Integrated Product Development** (LEC 1.0 and LAB 2.0) Students in design teams will simulate the industrial concurrent engineering development process. Areas covered will be design, manufacturing, assembly, process quality, cost, supply chain management, and product support. Students will produce a final engineering product at the end of the project. Prerequisite: Eng Mgt 354 or Mech Eng 357 or Mech Eng 253 or Mech Eng 308. (Co-listed with Eng Mgt 358)

360 **Probabilistic Engineering Design** (LEC 3.0) The course deals with uncertainties in engineering analysis and design at three levels - uncertainty modeling, uncertainty analysis, and design under uncertainty. It covers physics-based reliability analysis and reliability-based design, robustness assessment and robust design, their integration with design simulations, and their engineering applications. Prerequisite: Mech Eng 208 or Aero Eng 261. (Co-listed with Aero Eng 360)

362 **Experimental Vibration Analysis** (LEC 2.0 and LAB 1.0) Methods for measuring and analyzing motion and strain response of dynamically excited structures. Includes frequency-response testing of elementary beam, torsion bar, plate and shell structures. Experiments on the effectiveness of isolators and dynamic absorbers. Prerequisites: E Mech 361 or Mc Eng 307 or Ae Eng 307. (Co-listed with Ae Eng 362, E Mech 362)

363 **Principles And Practice Of Computer Aided Design** (LEC 2.0 and LAB 1.0) Fundamentals of computer-aided design including geometric modeling, CAD data exchange, graphics concepts, and finite element analysis. Projects include basic graphics, matrix algebra, automated drafting, freeform curve and surface modeling, solid modeling, assembly modeling, and finite element modeling, using educational and commercial software packages including Unigraphics and Matlab. Prerequisites: Cmp Sc 73, 77, Mc Eng 211, 208.

367 **Heat Pump And Refrigeration Systems** (LEC 3.0) The various methods used in the thermal design and analysis of both refrigeration and heat pumps systems are investigated. Various methods of producing heating and cooling are examined including vapor compression, absorption, air cycle, steam jet, and thermoelectric systems. Prerequisites: Mc Eng 221, 225.

371 **Environmental Control** (LEC 3.0) Theory and applications of principles of heating, ventilating, and air conditioning equipment and systems; design problems. Physiological and psychological factors relating to environmental control. Prerequisites: Mech Eng 221 and accompanied or preceded by Mech Eng 225; or Mech Eng 227 and Civ Eng 230.

373 **Thermal System Analysis** (LEC 3.0) The usage of simulation, optimization, and computer-aided design in thermal systems. Power generation, heating and refrigeration, and other complete thermal process systems are analyzed considering all factors which affect the design optimization of the system. Prerequisites: Mc Eng 221, 225.

375 **Mechanical Systems For Environmental Control** (LEC 3.0) Analysis of refrigeration, heating, and air-distribution systems. Synthesis of environmental control systems. Prerequisites: Mech Eng 221 and 225; or Mech Eng 227 and Civ Eng 230.

377 **Environmental Quality Analysis And Control** (LEC 3.0) Study of the thermal and particulate effluents of engineering systems, such as engines, fossil-fuel fired, and nuclear power plants. Investigation of the techniques for measurement and control of combustible and particulate discharges. Development of stochastic models and other comprehensive techniques for prediction of particulate and energy transport and distribution phenomena.

378 **Mechatronics** (LEC 2.0 and LAB 1.0) This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 279 or equivalent. (Co-listed with Aero Eng 378, Elec Eng 378 and Comp Eng 378)

379 **Fluid Systems And Controls** (LEC 3.0) Analysis and design of pneumatic, fluidic, and hydraulic power and control systems, particular emphasis on the basic mechanics of pneumatic and fluidic components and systems. Prerequisites: Mc Eng 231, 279.
381 Mechanical And Aerospace Control Systems (LEC 3.0) Synthesis of mechanical and aerospace systems to perform specific control functions. Response and stability are studied. Singular value analysis for stability margins is introduced. Prerequisite: Mc Eng 279 or Ae Eng 361. (Co-listed with Ae Eng 381)

382 Introduction To Composite Materials & Structures (LEC 3.0) Introduction to fiber-reinforced composite materials and structures with emphasis on analysis and design. Composite micromechanics, lamination theory and failure criteria. Design procedures for structures made of composite materials. An overview of fabrication and experimental characterization. Prerequisite: IDE 110. (Co-listed with Eng Mech 381 and Aero Eng 311)

383 Industrial Applications Of Composite Materials Technology (LEC 3.0) Composite materials-industrial applications. Fibers and matrices. Fabrication and NDI. Lamination theory overview. Composite joints. Postbuckling. Fatigue and environmental effects. Testing and certification of composite structures. A majority of the presentations will be made by engineers in the industry. Prerequisite: IDE 110. (Co-listed with Eng Mech 303)

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title. (Co-listed with Ae Eng 401)

407 Advanced Vibrations (LEC 3.0) Advanced treatment of discrete and continuous vibratory systems. Extensive use is made of matrix methods and operator notation. Special topics include: transmission matrices, relative coordinates, time dependent boundary conditions, approximate techniques for linear systems, nonlinear systems, and random excitations. Prerequisite: Mc Eng or Ae Eng 307 or E Mech 361. (Co-listed with Ae Eng 407)

408 Finite Element Approximation II Second Course (LEC 3.0) Continuation of Finite Element Approximation I-An Introduction; element selection and interpolation estimates, Lagrange, Hermite, and Isoparametric elements; mixed, hybrid, penalty and boundary elements; eigenvalue and time-dependent problems; three-dimensional and nonlinear problems. Prerequisite: E Mech 307 or Mc Eng 312 or Ae Eng 352. (Co-listed with E Mech 408, Ae Eng 408)

409 Engineering Acoustics II (LEC 3.0) Expanded treatment of the theory of sound generation and propagation. The acoustic source, dipole, and quadrupole. Noise sources due to vibration and fluid flow. Sound propagation in the atmosphere. The transmission of sound in ducts. Propeller, fan, and jet noise. Prerequisite: Mc Eng or Ae Eng 309. (Co-listed with Ae Eng 409)

410 Seminar (LEC 0.0-1.0) Discussion of current topics. (Co-listed with Ae Eng 410 and E Mech 410)

413 Advanced Dynamics Of Machinery (LEC 3.0) Current problems in aerospace dynamics are treated using methods of analytical mechanics; gyroscopic phenomena; the calculus of variations; stability of systems, to include approximate techniques. Prerequisite: Mc Eng or Ae Eng 313. (Co-listed with Ae Eng 413)

419 Microscopic Thermodynamics (LEC 3.0) A microscopic treatment of thermodynamic concepts using the statistical approach. The kinetic theory of an ideal gas including transport phenomena. A comprehensive introduction to Maxwell-Boltzmann and quantum statistics including the relationship between particular functions and thermodynamic properties. An introduction to the ensemble method of Gibbs for systems of dependent particles. Prerequisite: Mc Eng or Ae Eng 319. (Co-listed with Ae Eng 419)

423 Viscous Fluid Flow (LEC 3.0) Fundamentals of viscous fluids for incompressible and compressible flows governed by Navier-Stokes equations; exact, approximate, and numerical solutions for steady and unsteady laminar flows; stability, transition, and turbulence, CFD simulations of internal and external flows. Prerequisite: Mc Eng or Ae Eng 331. (Co-listed with Ae Eng 423)

424 Theory Of Stability II (LEC 3.0) Buckling of plates and shells, dynamic stability of elastic systems, and nonconservative systems. Prerequisite: E Mech 334 or Mc Eng 334 or Ae Eng 334. (Co-listed with E Mech 435)

425 Heat Transfer By Conduction (LEC 3.0) A study of conduction heat transfer in solids by analytical and other methods. Prerequisite: Mc Eng or Ae Eng 325. (Co-listed with Ae Eng 425)

426 Micro-/Nano-Scale Thermophysics and Energy Transport (LEC 3.0) Introduces advanced statistical thermodynamics, nonequilibrium thermodynamics, kinetic theory, and quantum theory to analyze thermophysics and energy transport for microscale and nanoscale systems. Covers the fundamental concepts of photons, electrons, and phonons in the forms of waves and particles. Includes applications to ultrafast laser processing. Prerequisite: Mech Eng 325.

427 Heat Transfer By Convection (LEC 3.0) An analytical study of convective heat transfer in laminar and turbulent flows; forced convection, natural convection, and mixed convection; combined heat and mass transfer; heat transfer with change of phase; instability of laminar flow; current topics in convection. Prerequisite: Mc Eng or Ae Eng 325. (Co-listed with Ae Eng 427)
194 - Mechanical Engineering Courses

429 Heat Transfer By Radiation (LEC 3.0) A study of the nature of thermal radiation; implications from electromagnetic theory; radiative characteristics of surfaces; enclosures; configuration factors; radiosity; specular and diffuse reflection; transfer in absorbing, emitting and scattering media; combined radiation conduction and convection; experimental methods. Prerequisite: Mc Eng or Ae Eng 325. (Co-listed with Ae Eng 429)

430 Theory Of Plates (LEC 3.0) General coverage of various approaches to plate problems and the application of these methods to practical problems. Special topics include applications to elastic foundations, buckling and energy methods in plate theory. Prerequisite: Math 325. (Co-listed with E Mech 431)

431 Gas Dynamics I (LEC 3.0) A critical analysis of the phenomena governing the flow of a compressible fluid; introduction to flow in two and three dimensions; Prandtl-Meyer expansions; small perturbations in subsonic and supersonic flows; method of characteristics. Prerequisite: Mc Eng or Ae Eng 331. (Co-listed with Ae Eng 431)

432 Theory Of Shells (LEC 3.0) General theory of stress analysis of shells based on topics in differential geometry and general elasticity theory. Theory is applicable to studies of the elastic behavior of flat plates and shells, buckling and post-buckling behavior of shells, and provides a basis for all shell theories which account for anisotropy, plasticity, creep, thermal strains, internal reinforcements, and transverse shearing deformations. Prerequisite: Math 325. (Co-listed with E Mech 432)

433 Gas Dynamics II (LEC 3.0) A continued study of compressible fluid flow phenomena; bodies of revolution and slender body theory; transonic flow; unsteady one-dimensional motion including small amplitude waves, continuous flow, and shock waves; the shock tube; shockwave boundary layer interactions. Prerequisite: Mc Eng or Ae Eng 431. (Co-listed with Ae Eng 433)

435 Turbulence In Fluid Flow (LEC 3.0) Fundamentals of statistical theory of turbulence; turbulence modeling for transport processes of heat, mass, and momentum; closure schemes for Reynolds-averaged Navier-Stokes equations in free turbulence and wall turbulence; CFD simulations of turbulent flows. Prerequisite: Mc Eng or Ae Eng 331. (Co-listed with Ae Eng 435 and Ch Eng 435)

436 Advanced Fracture Mechanics (LEC 3.0) Mathematical theories of equilibrium cracks and brittle fracture, mathematical analysis of elastic-plastic fracture mechanics, COD, R-curve and J-integral analysis. Prerequisite: Ae Eng 336 or E Mech 336 or Mc Eng 336. (Co-listed with E Mech 436)

437 Physical Gas Dynamics I (LEC 3.0) Features of high temperature gas flows including the development of the necessary background from kinetic theory, statistical mechanics, chemical thermodynamics and chemical kinetics. Equilibrium and non-equilibrium gas properties and gas flows are included. Prerequisite: Mc Eng or Ae Eng 331. (Co-listed with Ae Eng 437)

439 Physical Gas Dynamics II (LEC 3.0) Features the study of transition regime gas dynamics including the concept of molecular velocity distribution, gas-solid interaction, the Boltzmann equation, nonequilibrium flow and solutions to specific problems in transition flow. Prerequisite: Mc Eng or Ae Eng 331. (Co-listed with Ae Eng 439)

441 Advanced Energy Conversion (LEC 3.0) An analytical study of power producing systems with emphasis on new techniques and energy sources. All basic methods of energy conversion are covered from detailed physical descriptions to mathematical analysis. Included are advanced heat engines, nuclear power reactors, thermoelectric engines, magnetohydrodynamic devices, solar energy, fuel cells, and recent developments. Prerequisite: Mc Eng (or Ae Eng) 319, or Mc Eng (or Ae Eng) 325

443 Engineering Magnetohydrodynamics (LEC 3.0) Critical study of magnetohydrodynamic power generation and magnetohydrodynamic propulsion; including the study of ionization processes, gaseous conduction, fundamental equations of magnetohydrodynamics, exact solutions of magnetohydrodynamic channel flow, one dimensional approximation, boundary layer development and important parameters in magnetohydrodynamics. Prerequisite: Math 322. (Co-listed with Ae Eng 443)

447 Markov Decision Processes (LEC 3.0) Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Comp Eng 457, Aero Eng 457, Eng Mgt 457 and Comp Sci 457)

451 Thermal Stresses I (LEC 3.0) Review of conduction heat transfer principles and formulation of fundamental thermal stress relations with closed form and finite element solution of some basic practical problems. Prerequisite: Mc Eng 325. (Co-listed with Ae Eng 451)

453 Advanced Cnc Of Manufacturing Processes & Engineering Metrology (LEC 2.0 and LAB 1.0) Advanced treatment of Computer Numerical Control (CNC) part programming and machine tool metrology. Topics include mathematical modeling and characterization of machine tools and Coordinate Measuring Machines (CMMs); Measurement and analysis of dimensional accuracy, surface finish, precision, and uncertainty; Machine tool error modeling and compensation; Virtual Numerical Control (VNC) Machine Tool modeling, programming, simulation and process verification/optimization. Projects include advanced CNC programming and simulation. Prerequisite: Mc Eng 353.
455 **Modeling And Control Of Manufacturing Processes** (LEC 3.0) This course covers control-oriented modeling, simulation, and control of manufacturing processes. Topics include digital control, control system hardware, servomechanisms, interpolation, coordinated motion control, regenerative chatter, and control of machining and non-traditional processes. Control algorithms are implemented on a machining center. Prerequisites: Mc Eng 355, Mc Eng 381.

457 **Laser Aided Manufacturing And Materials Processing** (LEC 3.0) Fundamental studies in laser aided manufacturing and materials processing including laser principles and optics, physics of laser-materials interaction, interface responses for rapid solidification, theories on non-equilibrium synthesis, modeling of transport phenomena, optical sensing techniques, current topics and considerations for lasers in manufacturing. Prerequisite: Mc Eng 325.

458 **Adaptive Critic Designs** (LEC 3.0) Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisite: Elec Eng 368 Neural Networks or equivalent (Computational Intelligence Studies). Prerequisite: Elec Eng 368 Neural Networks or equivalent (Computational Intelligence Studies). Prerequisite: Elec Eng 368 Neural Networks or equivalent (Computational Intelligence Studies). Prerequisite: Elec Eng 368 Neural Networks or equivalent (Computational Intelligence Studies).

459 **Advanced Topics In Design And Manufacturing** (LEC 3.0) Various topics in the area of design and manufacturing will be covered in this course: development of flexible manufacturing systems, CAD/CAM integration, rapid prototyping, etc. Prerequisite: Mc Eng 355.

461 **Modern Product Design** (LEC 3.0) Modern product development, design and prototyping are examined from a product architecture standpoint in this course. Functional modeling techniques are used to establish the architecture of a product and recently developed theories and techniques for design are covered. A prototyping project is required to provide immediate application of the theories. Prerequisite: Mc Eng/Ae Eng/Mg 350 or Mc Eng 308 or Mc Eng 356. (Co-listed with IDE 420)

475 **Advanced Environmental Control** (LEC 3.0) The study of environmental control systems including their sizing, control, and energy requirements. Use of major energy analysis programs for system evaluation. Prerequisite: Mc Eng 375.

479 **Analysis And Synthesis Of Mechanical And Aerospace Systems** (LEC 3.0) A unified treatment of modern system theory for the Mechanical and Aerospace Engineering Controls Analyst, including analysis and synthesis of linear and nonlinear systems, compensation and optimization of continuous and discrete systems, and theory of adaptivity. Prerequisite: Mc Eng 381 or Ae Eng 381. (Co-listed with Ae Eng 479)

483 **Aerosol Mechanics & Low Reynolds Number Hydrodynamics** (LEC 3.0) Aerosol (hydrosol) particle motion under the influence of external forces (inertial, gravitational, electrostatic, phoretic, etc.) particle coagulation, deposition, filtration theory applied to clean rooms. Prerequisite: Mc Eng or Ae Eng 331 or Ch Eng 336.

484 **Analysis Of Laminated Composite Structures** (LEC 3.0) An overview of isotropic beams, plates, and shells. Bending, vibration, and buckling of laminated composite beams and plates: exact and approximate solutions. Development of composite shell theory and simplified solutions. Analysis of composite structures including transverse shear deformation and thermal effects. Prerequisite: E Mech 381 or Mc Eng 382 or Ae Eng 311. (Co-listed with E Mech 484 and Ae Eng 484)

485 **Mechanics Of Composite Materials** (LEC 3.0) Effective moduli of spherical, cylindrical, and lamellar systems. Micromechanics of fiber-matrix interfaces and unidirectional composites. Application of shear lag and other approximate theories to interfaces and composites including fiber pull-out, debonding and matrix cracking. Prerequisite: E Mech 381 or Mc Eng 382 or Ae Eng 311. (Co-listed with E Mech 483 and Ae Eng 485)

487 **Finite Element Approximation III- Nonlinear Problems** (LEC 3.0) Formulation of nonlinear problems, iterative methods, solution of nonlinear problems, cover topics of interest to the class. Prerequisite: E Mech 408 or Mc Eng 408 or Ae Eng 408. (Co-listed with EMech 487 and Ae Eng 487)

490 **Research** (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

491 **Internship** (IND 0.0-15.0) Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

493 **Oral Examination** (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 **Continuous Registration** (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for
Metallurgical Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

303 New Developments In Chemical Metallurgy (IND 1.0-3.0) Survey of selected modern processes for the production of metals, the treatment of wastes, and recycling of metal values. Processes are studied with respect to raw materials, chemical reactions, energy consumption, process intensity, yield and environmental impact. Prerequisite: Mt Eng 203.

305 Nondestructive Testing (LEC 3.0) Principles and application of various means of nondestructive testing of metallic materials. Radiological inspection methods, ultrasonic testing, magnetic methods, electrical and eddy current methods, and others. Prerequisites: Physics 24 or 25.

306 Nondestructive Testing Laboratory (LAB 1.0) Application of radiological and ultrasonic methods of nondestructive testing of metallic materials. A radiographic X-ray units and ultrasonic equipment are used in the inspection of a variety of materials and manufactured parts. Prerequisite: Accompanied or preceded by Mt Eng 305.

307 Metals Casting (LEC 3.0) An advanced course in the materials and methods used in modern metals casting processes. Application of metallurgical principles to the casting of metals. Design of castings and metals casting mold features using commercial casting process simulation software. Prerequisite: Met Eng 221 or Mech Eng 153.

308 Metals Casting Laboratory (LAB 1.0) An advanced laboratory study of mold materials, metal flow, and cast metals. Emphasis is given to design of gating, risering, and ladle treatment techniques required for economical, highquality castings. Prerequisite: Accompanied or preceded by Mt Eng 307.

310 Seminar (IND 0.0-3.0) Discussion of current topics.

311 Metals Joining (LEC 2.0) Metals joining processes such as welding and brazing. Effects of welding on materials. Treatment and properties of welded joints. Welding defects and quality control. Prerequisite: Mt Eng 121 or 221.

313 Scanning Electron Microscopy (LEC 2.0 and LAB 1.0) A course in the theory and application of scanning electron microscopy and x-ray microanalysis. Topics considered are electron optics, image formation and analysis; x-ray generation, detection and analysis; and characterization of fracture surfaces. Prerequisites: Mt Eng 217 and 218 or course in optical microscopy - consent of instructor required.

315 Metallurgical Process Design Principles (LEC 2.0) Application of mass, component and energy balances for metallurgical design. The fundamentals of engineering economic analysis will be examined and experimental design techniques will be introduced. Students will be prepared for the selection and planning of the subsequent design project. Prerequisite: Senior standing in Mt Eng.

316 Metallurgical Design Project (LAB 2.0) Student groups will undertake selected projects, which will represent a capstone design experience utilizing skills, understanding and data from previous courses. The faculty supervised open-ended design projects will involve a variety of tasks appropriate to the metallurgical engineer. Prerequisite: Mt Eng 315.

321 Metal Deformation Processes (LEC 3.0) An introduction to metal deformation concepts followed by a study of various forming processes from both the analytical and applied viewpoints. Processes to include: forging, wire drawing, extrusion, rolling, sheet metal forming, and others. Prerequisite: Mt Eng 221.

329 Material Selection, Fabrication, And Failure (LEC 3.0) Factors governing the selection of materials for specific needs, fabrication, heat treatment, surface treatment, and other aspects in the production of a satisfactory component. Failure analysis and remedies. Lecture plus assigned problems. Prerequisites: Mt Eng 217, 218, 221.

331 Steels And Their Treatment (LEC 3.0) Industrially important ferrous alloys are described and classified. The selection of proper heat treatments to facilitate fabrication and to yield required service properties in steels suitable for various applications is considered. Prerequisites: Met Eng 217 and Met Eng 218.

332 Metals Treatment Laboratory (LAB 1.0) The students plan and perform experiments that illustrate heat treating processes and their effects on the properties and structure of commercial alloys. Prerequisite: Accompanied or preceded by Mt Eng 331.

333 Nonferrous Alloys (LEC 3.0) Structure and properties of nonferrous alloys (Al, Ti, Mg, Ni and Cu) are described. The role of processing and microstructure in the development of mechanical properties is emphasized. Prerequisites: Mt Eng 217 or Mt Eng 377.

340 Biomaterials I (LEC 3.0) This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility,
and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Cer Eng 340, Bio Sci 340, Chem Eng 340)

341 Nuclear Materials I (LEC 3.0) Fundamentals of materials selection for components in nuclear applications. Design and fabrication of UO2 fuel; reactor fuel element performance; mechanical properties of UO2; radiation damage and effects, including computer modeling; corrosion of materials in nuclear reactor systems. Prerequisites: IDE 110; Nuc Eng 205; Nuc Eng 223; Met Eng 121. (Co-listed with Nuc Eng 341)

343 Nuclear Materials II (LEC 3.0) Extractive metallurgy of uranium, thorium, and zirconium. Equation of state of UO2 and fuel chemistry. LMFR fuel and interaction of sodium and stainless steel. Materials for fusion and other advanced nuclear applications. Reprocessing of spent fuel and disposal. Prerequisite: Mt Eng 341.

350 Composites (LEC 3.0) An introduction to the structure, properties and fabrication of fiber and particulate composites. Prerequisites: Mt Eng 215 & 211 or Cr Eng 102 & 242.

351 Mineral Processing II (Flotation And Hydrometallurgy) (LEC 2.0 and LAB 1.0) Froth flotation including mineral surfaces, double layer theory, zeta potential, hydrophobicity, adsorption, collectors, frothers, modulation, kinetics, and sulphide and acid flotation systems. Hydrometallurgy including leaching, ion exchange and liquid/liquid extraction. Prerequisite: Mt Eng 241.

352 International Engineering and Design (LEC 3.0) A multi-disciplinary engineering course focused on sustainable design and technology transfer to developing countries. Course includes elements of traditional capstone design classes. Experiential learning through competitions and/or field work is a major component of the class. Prerequisite: Senior standing, instructor approval. (Co-listed with Geo Eng 352 and Cer Eng 352)

353 Mineral Processing II (Mechanics And Design) (LEC 2.0 and LAB 1.0) Mineral particle mechanics of comminution, sizing, classification, concentration, filtering and thickening. Mill and equipment selection and design including flowsheet development and plant assessment. Prerequisite: Mt Eng 241.

354 Electrical Systems and Controls for Materials (LEC 2.0 and LAB 1.0) This course will cover analysis of alternating and direct current circuits as experienced in the materials industry. Current, voltage, and power relationships in single and three-phase electrical power systems. Introduction to continuous and batch instrumentation including programmable logic controllers (PLCs) and computer interfacing for materials applications. Prerequisite: Physics 24.

355 Process Metallurgy Applications (LEC 3.0) Application of thermodynamics to process metallurgy. Equilibrium calculations with stoichiometry and heat balance restrictions, phase transformations, and solution thermodynamics. Use of thermodynamic software to solve complex equilibria in metallurgical applications. Prerequisite: Cer Eng 259.

358 Steelmaking (LEC 3.0) Introduction to the fundamentals and unit processes used to turn impure iron and scrap into steel. Includes desulfurization, BOF and electric furnace operations, ladle metallurgy, casting, and stainless steel manufacture.

359 Environmental Aspects Of Metals Manufacturing (LEC 3.0) Introduction to environmental aspects of metal extraction, melting, casting, forming, and finishing. Subjects include history of environmental movement and regulations permitting, risk analysis, disposal and recycling of metal manufacturing residues, environmental ethics, environmental technologies and case studies. Prerequisite: Junior/Senior standing.

361 Alloeing Principles (LEC 3.0) Basis for alloy design and property control. Predictions of phase stability, alloy properties and metastable phase possibilities; interfaces in solids and their role in phase transformations. Prerequisites: Mt Eng 217, 218.

363 Metal Coating Processes (LEC 3.0) Introduction to the current technologies used to enhance metal performance, particularly corrosion resistance, by overlay coatings. Deposition processes are emphasized and the fundamentals of the behavior of the films in high technology and electronic materials applications is discussed. Prerequisites: Mt Eng 202, 203.

365 Microfabrication Materials And Processes (LEC 3.0) An overview course on the materials and processes used to fabricate integrated circuits, microelectromechanical systems (MEMS), interconnect substrates and other microelectronic components from starting material to final product. The emphasis will be on the influence of structure and processing on the electrical, mechanical, thermal, and optical properties. Prerequisites: Chem 1 or equivalent; Senior or Graduate Standing.

367 Introduction to Particulate Materials (LEC 3.0) Powder metallurgy and ceramic components, filters, catalysts, nanomaterials, vitamins and more depend strongly on particulate, or powder, characteristics and processing. Aspects of powder fabrication, characterization, safety, handling, component fabrication, secondary processing, and applications will be covered. Prerequisite: Met Eng 121.

375 Metallurgical Failure Analysis (LEC 3.0) Application of the principles of manufacturing and mechanical metallurgy for the analysis of failed components. Analytical techniques such as Scanning Electron Microscopy, Optical Metallography, and High Resolution Photography are used to characterize microstructure and
fractographic features. In addition, appropriate methods to gather data, assimilate it, and draw conclusions from the data such that it will stand up in a court of law will be addressed. Prerequisite: Senior or Graduate Student standing.

377 Principles Of Engineering Materials (LEC 3.0) Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Ae Eng 377, Ch Eng 347, Physics 377, Cr Eng 377)

381 Corrosion And Its Prevention (LEC 3.0) A study of the theories of corrosion and its application to corrosion and its prevention. Prerequisite: Chem 243 or Cer 259. (Co-listed with Ch Eng 381)

385 Mechanical Metallurgy (LEC 3.0) Elastic and plastic behavior of metallic single crystals and polycrystalline aggregates. Resulting changes in mechanical properties are considered. Included are applications to metal fabrication. Prerequisites: Met Eng 215, 216, IDE 110.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

403 High Temperature And Corrosion Resistant Alloys (LEC 3.0) Fabrication and use of nickel, titanium, and refractory metal based alloys for use at high temperatures or in chemically corrosive environments. Properties and strengthening mechanisms of these alloys. Theory of high temperature oxidation and corrosion and design of alloys to prevent them. Prerequisites: Met Eng 217, 218.

404 Recent Advances In Extractive Metallurgy (LEC 2.0) A survey of extractive processes recently developed in the light of modern requirements with respect to raw materials, product quality, environmental impact, energy consumption, capital cost and process control. Prerequisite: Mt Eng 355.

414 Transmission Electron Microscopy (LEC 2.0 and LAB 1.0) A course in the theory and application of transmission electron microscopy. Topics considered are electron optics, image formation, defect structures, specimen preparation, contrast theory and electron diffraction. Prerequisite: Mt Eng 313.

421 Ferrous Metals Casting (LEC 3.0) An advanced study of the metallurgy of cast irons and net shape cast steel alloys. Includes theories of nucleation and growth in gray, nodular, compacted graphite and malleable irons. The effects of deoxidation practice and inclusion shape control for cast steels are also included. The effects of alloying elements, processing variables and heat treatment.

429 Advanced Materials Selection And Fabrication (LEC 3.0) Application of the principles of material selection and the factors governing fabrication, heat treatment, and surface treatment. Weekly assignments requiring library research and written reports. Lecture plus classroom discussion of assigned problems.

440 Biomaterials II (LEC 3.0) This course will introduce graduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. A term paper and oral presentation are required. Prerequisite: Graduate Standing. (Co-listed with Cer Eng 440, Bio Sci 440, Chem Eng 440)

451 Refining Of Metals (IND 2.0-3.0) Principles and applications of thermochemistry, phase equilibria, and kinetics as applied to the refining of metals and alloys. Theory of dilute solutions, interaction coefficients and reactions of metals with gases and slags. Analysis and design of refining processes. Optional third credit hour requires a term paper. Prerequisite: Mt Eng 355 or Cr Eng 259.

455 Chemical Metallurgy (LEC 3.0) The theory and application of basic chemical principles to the extraction, refining and general chemical behavior of metals and alloys. Independent study project will focus on process design options emphasizing environmental aspects of flow sheet development. Prerequisites: Physics 107, Chem 243.

457 Transport Phenomena In Extractive Metallurgy (LEC 3.0) The application of chemical reaction engineering principles to metallurgical processes. Residence-time districution in reactors and its effect on performance, topochemical gas-solid reactors, two-film theory of mass transfer applied to slag-metal and gas-metal reactions. Prerequisite: Mt Eng 355 or equivalent.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.
Mining Engineering

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Computer Applications In The Mining & Minerals Industry (LEC 2.0 and LAB 1.0) History of computer technology usage in the mining industry. Exposure to the use of computers in mine planning, design, exploration, ventilation & environment, rock mechanics, open pit stability, simulation of mining systems and equipment selection.

304 Advanced Aggregate and Quarrying (LEC 3.0) Advanced coverage of topics on the stone and aggregate industry, including surface and underground operations, plant equipment, economics, marketing, transportation, and environmental topics. The course will include at least one field trip and a design project. Prerequisite: Min Eng 215, co-requisite: Civ Eng 216.

305 Explosives Handling And Safety (LEC 1.0) Basic handling & safety for explosives, explosive devices and ordnance related to laboratory handling, testing, manufacturing & storage, for both civil and defense applications. For “credit offering” of the UMR Explosives Handling & Safety Industrial Short Course.

306 Material Processing By High-Pressure Water Jet (LEC 3.0) Methods of generating high pressure water jets; standard equipment, existing techniques and basic calculations. Applications of water jets to materials cutting and mineral processing. Safety rules. The course will be supported by laboratory demonstrations. (Co-listed with Mc Eng 306)

307 Principles Of Explosives Engineering (LEC 2.0 and LAB 1.0) Theory and application of explosives in the mining industry; explosives, initiating systems, characteristics of explosive reactions and rock breakage, fundamentals of blast design, drilling and blasting, regulatory and safety considerations. Prerequisite: Accompanied or preceded by either Civ Eng 215 or Geology 220 or Geology 125.

308 Drilling And Blasting (LEC 1.0 and LAB 1.0) The mechanics of rock breakage in drilling and blasting. Drill equipment systems, and the application of engineering principles in the design of blasting rounds for construction and mining excavation problems. Prerequisite: Mi Eng 307.

309 Commercial Pyrotechnics Operations (LEC 2.0 and LAB 1.0) Provide participants with basic pyrotechnic operator certification (with passing of PGI test) and advanced lead pyrotechnic operator training. Class work will be complemented by practical training in laboratory sessions, culminating in a full pyrotechnic show, from start to finish. Prerequisites: Chem 1. US Citizen or permanent resident (to fulfill the requirements of the SAFE EXPLOSIVES ACT 2003). Resident enrollment at Missouri S&T (e.g. not distance or internet).

311 Mine Plant Management (LEC 2.0) Optimization of mine plant and equipment performance. Availability, utilization and reliability of equipment; matching equipment and plant to minesite specific conditions; maintenance planning, scheduling and control; parts and materials supply systems; mine information and management systems. Basics of mine automation and robotics. Prerequisite: Senior standing or consent of instructor.

312 Ore Reserve Analysis And Geostatistics (LEC 2.0 and LAB 1.0) An introduction to principles of geostatistics, theory of spatially correlated random variables, variance and co-variances and their application on the evaluation of mineral resources, ore reserve estimation, strategic exploration, and production planning. Real case studies from mining industry will be presented. Prerequisites: Math 204, Stat 213.

315 Advanced Mine Health and Safety (LEC 3.0) A detailed study of health and safety principles, practices, analyses, regulations, issues and technology in the mining industry. Prerequisite: Min Eng 151.

318 Mine Atmosphere Control (LEC 2.0 and LAB 1.0) Fundamentals of mine ventilation, including the principles of airflow, control of gases, dust, and temperature, methane drainage, mine fans, network theory, computer network simulation, and economics of airflow, with emphasis on analysis, systems design and practical application. Prerequisite: Civ Eng 230.

322 Mine Management (LEC 2.0) Theory and practice of mine management, including basic managerial functions, management theories, communication skills, motivation, leadership, organization,
maintenance management, managerial decision making, cost control, labor relations, government relations, ethics, with emphasis in presentation skills. Prerequisite: Completion of 100 credits in Mining Engineering curriculum.

324 Underground Mining Methods And Equipment (LEC 3.0) Principles of planning, constructing, and operating economically viable underground mines. Cost effective mining methods: room-and-pillar, stopping, caving. Selection of equipment for underground mining operations. Prerequisite: Coreq. Min Eng 221 and Min Eng 331.

325 Mining Methods For Metal And Industrial Minerals (LEC 4.0) The process of developing metallic and industrial mineral deposits into productive entities. Principles of planning, constructing, and operating economically viable underground and surface mines. Cost effective mining methods and equipment selection. Principles of operation and coordination of mining projects. Stopping methods, benching methods. Prerequisites: Mi Eng 221, 270.

331 Rock Mechanics I (LEC 2.0) Rock mass ratings; empirical failure criteria; slope and highwall stability; field stresses; design of underground openings, pillars, and roof beams; principles of roof-bolt design; surface subsidence. Prerequisites: IDE 140 or IDE 50 and 150; and Geology 220.

343 Coal Mine Development And Production (LEC 3.0) An in-depth study of all aspects of coal mining, including an overview of coal industry, reserves and geology, planning and development of coal mines, surface and underground mechanized methods of face preparation, equipment, coal extraction, handling and preparation as practiced in the United States. Prerequisite: Accompanied or preceded by Mi Eng 217.

344 Coal Preparation (LEC 2.0 and LAB 1.0) Coal properties, sampling, testing, breaking, sizing, cleaning and dewatering. Disposal of refuse. Prerequisites: Min Eng 241 and senior standing.

345 Strata Control (LEC 3.0) A detailed review of artificial ground support, both above and below ground, including slope stabilization techniques and shaft and tunnel liner design. The use of shotcrete, roofbolts, and solid liners and the principles of underground longwall and room and pillar mine support. Longwall and hydraulic mining practice is covered. Prerequisite: Min Eng 331.

350 Blasting Design And Technology (LEC 2.0 and LAB 1.0) Advanced theory and application of explosives in excavation; detailed underground blast design; specialized blasting including blast casting, construction and pre-splitting. Introduction to blasting research. Examination of field applications. Prerequisite: Min Eng 307. Student must be at least 21 years of age.

351 Demolition of Buildings and Structures (LEC 2.0 and LAB 1.0) Provide participants with basics and solid grounding in the equipment, techniques and processes required for the demolition and remediation of mine plant and processing equipment sites and non-mining structures such as buildings, factories, bridges, etc. Prerequisite: Preceded or accompanied by IDE 50 or 140, plus US citizen or permanent resident. *Requirement due to Safe Explosives Act - January 2003.

370 Valuation Of Mineral Properties (LEC 3.0) Engineering principles utilized for establishing values of metallic, fuel, and industrial mineral deposits; reserve estimation from exploration samples, geostatistics; mine taxation; influence and sensitivity analyses; alternative valuation techniques. Prerequisite: Mi Eng 270.

376 Environmental Aspects Of Mining (LEC 3.0) Permitting: the legal environment of reclamation and environmental impact assessment; post-mining land-use selection and mine planning for optimum reclamation of all mines: metal, nonmetal, and coal; unit operations of reclamation: drainage, backfill, soil replacement, revegetation, maintenance, etc. Prerequisites: Ge Eng 50; Mi Eng 324 and 326 or prereq./coreq. Cv Eng 215. (Co-listed with Ge Eng 376)

383 Tunneling & Underground Construction Techniques (LEC 2.0 and LAB 1.0) Cover both mechanical excavation and conventional excavation techniques to underground tunneling and construction. The emphasis will be on equipment selection and prediction of performance expected of the equipment. Ground control systems will be covered as technology emerges. Excavation methods and support of large caverns, often found in civil structures, will also be discussed. A limited focus will be on underground construction specifications and underground advance rate and cost estimation techniques. Prerequisites: Min Eng 331, Min Eng 324 or Civ Eng 215; Civ Eng 216 or Geo Eng 371.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

393 Mine Planning And Design (LEC 2.0 and LAB 2.0) Selection of a mining design project that results in the preparation of a comprehensive engineering report and oral presentation for the economic exploitation of the selected geologic deposit. The course includes instruction and student guidance that integrates and applies engineering economics, sciences, use of commercial software & principles to develop a mineable deposit. Prerequisite:
Completion of 110 hours in Mining Engineering curriculum.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

402 Environmental Controls For Blasting (LEC 2.0 and LAB 1.0) Advanced blast mechanics; overbreak control including comprehensive coverage of perimeter and smoothwall specialist blasting techniques and geotechnical factors affecting blast vibration, limits analysis monitoring and control; air blast control including limits, monitoring and atmospheric and topographic effects. Prerequisite: Mi Eng 307.

403 Optimization Applications In Mining I (LEC 3.0) Mining applications of deterministic optimization techniques are covered, including linear, integer, mixed-integer, dynamic, unconstrained and constrained nonlinear, and heuristic programming. Prerequisite: Graduate standing or consent.

404 Advanced Mining Systems (LEC 3.0) Principles of design for the development and production of hard rock mineral deposits that require integrated surface and underground mining methods. Cost considerations leading to optimization. Terminal feasibility report required. Prerequisites: Mi Eng 224, 226 and 393.

405 Non-Explosives Rock Fragmentation (LEC 2.0 and LAB 1.0) Modern methods of geotechnical excavation are discussed. These include drills, plows, shearsers, roadheaders, impact breakers, and tunnel boring machines, together with thermal cutting, electron beam, the REAM concept and waterjet cutting whether by plain, cavitating, abrasive-laden, or mechanically assisted jets.

406 Scientific Instrumentation For Explosives Testing & Blasting (LEC 2.0 and LAB 1.0) Application of scientific principles, equipment description and operation for instrumentation of explosive events including blasting. Topics: Blast chamber design, set up, high-speed photography, motion detection and measurement, explosives sensitivity testing, explosives properties testing, vibration measurement & analysis, destruction & demilitarization.

407 Theory Of High Explosives (LEC 3.0) Study of the application of chemical thermodynamics and the hydrodynamic theory to determine properties of high explosives; kinetics and reaction rates; application of the above to the blasting action of explosives. Prerequisite: Mi Eng 307.

409 Mining Property Feasibility Studies And Evaluation Procedure (LEC 2.0 and LAB 1.0) A systematic phased approach is presented, designed to increase the level of confidence and accuracy of estimates, moving from exploration through to a "bankable" study. Liability, ethics, resource/reserves, political/social/investment risk, economic parameters, and due diligence are discussed. Prerequisite: Mi Eng 270 or Geo 294 or Cv Eng 241 or Eng Mg 208 or Mi Eng 376 or Geop 382.

410 Seminar (RSD 1.0) Discussion of current topics.

412 Mine Management II (LEC 3.0) The course covers advanced concepts in managing mine operations. Topics to be covered include TQM, statistical process control, benchmarking, KPI, standards and standardization, ISO 9000: Quality Control, ISO 14000: Environmental systems, OHSAS 18000. Management systems, SA8000, Social Accountability and others. Prerequisite: Consent of instructor.

415 Advanced Mine Health And Safety Design (LEC 3.0) Principles of design of mining operations with emphasis on the health and safety of the worker. Prerequisite: Graduate standing.

416 Advanced Mineral Engineering Design II (LEC 1.0 and LAB 2.0) Incorporation of principles developed in Mining 415 in advanced design projects for mineral plants and systems, with emphasis on environmental protection, health, and safety. Prerequisite: Mi Eng 415.

418 Mine Atmospheric Control II (LEC 3.0) Climatic measurements and temperature precalculations, emergency plans for fan failures and mine fires, mine air contaminants, mine noises, mine dust, refrigeration and cooling plant layout, radiation control. Prerequisite: Mi Eng 318.

432 Advanced Rock Mechanics (LEC 3.0) Advanced topics in static and dynamic rock mechanics; elasticity theory, failure theories and fracture mechanics applied to rock; stress wave propagation and dynamic elastic constants; rock mass classification methods for support design; pillar design in coal and metal mines; introduction to numerical models. Prerequisite: Mi Eng 231 or Cv Eng 215.

433 Rock Mechanics IV (LEC 3.0) Advanced topics in dynamic rock mechanics. Stress wave propagation in the earth, dynamic elastic constants in isotropic and anisotropic rock, Hopkinson bar impact analysis, spallation and radial fracturing caused by stress pulses, shock wave generation in rock by explosives, shock wave propagation and effects. Prerequisite: Mi Eng 231 or Cv Eng 215.

434 Mining Law (LEC 3.0) Federal and state mining statutes including regulations governing lode and placer claims, leases, environmental protection, safety, and taxation.

484 Explorations Seismolog (LEC 3.0)

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

491 Internship (IND 0.0-15.0) Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering
experience consistent with the intent of the doctor of engineering degree.

493 **Oral Examination** (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 **Continuous Registration** (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Nuclear Engineering Courses

300 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

303 **Reactor Physics I** (LEC 3.0) Study of neutron interactions, fission, chain reactions, neutron diffusion and neutron slowing down; criticality of a bare thermal homogeneous reactor. Prerequisite: Nu Eng 205.

304 **Reactor Laboratory I** (LEC 1.0 and LAB 1.0) Acquaints the student with neutron flux measurement, reactor operation, control rod calibration, reactor power measurement and neutron activation experiments. Experiments with the thermal column and neutron beam port are also demonstrated. Prerequisites: Nu Eng 204, 205.

306 **Reactor Operation II** (LAB 1.0) The operation of the training reactor. The program is similar to that required for the NRC Reactor Operator's license. Students from other disciplines will also benefit from the course. Prerequisite: Nu Eng 105, 206.

307 **Nuclear Fuel Cycle** (LEC 3.0) Nuclear fuel resources and reserves; milling, conversion, and enrichment; fuel fabrication; in-and-out-of core fuel management; transportation, storage, and disposal of nuclear fuel; low level and high level waste management, economics of the nuclear fuel cycle. Prerequisite: Nu Eng 205.

308 **Reactor Laboratory II** (LEC 1.0 and LAB 1.0) A continuation of Nuclear Engineering 304 with experiments of a more advanced nature. Prerequisite: Nu Eng 304.

309 **Licensing Of Nuclear Power Plants** (LEC 2.0) The pertinent sections of the Code of Federal Regulations, the Nuclear Regulatory Commission's Regulatory Guides and Staff Position Papers, and other regulatory requirements are reviewed. Safety analysis reports and environmental reports for specific plants are studied.

310 **Seminar** (RSD 0.0-6.0) Discussion of current topics. Prerequisite: Senior standing.

311 **Reactor Physics II** (LEC 3.0) Analytic and computer based methods of solving problems of reactor physics. Prerequisites: Nu Eng 303, Cmp Sc 228.

312 **Nuclear Radiation Measurements and Spectroscopy** (LEC 2.0 and LAB 1.0) Contemporary radiation detection theory and experiments with high resolution gamma-ray spectroscopy, solid state detectors, neutron detection and conventional gas filled detectors. Neutron activation analysis of unknown material, statistical aspects of nuclear measurements. Prerequisite: Nu Eng 205.

315 **Space Nuclear Power And Propulsion** (LEC 3.0) A study of the design, operation and application of radioisotope power generators and nuclear reactors for space power and propulsion systems used on both manned and unmanned missions. Prerequisite: Mc Eng 219 or Nu Eng 319.

317 **Two-phase Flow in Energy Systems - I** (LEC 3.0) It is an introductory course for both undergraduate or graduate students who are interested in the application of two-phase flow in energy systems. It will acquaint students with governing equations for both single-phase and two-phase fluid flow, state-of-the-art analytical methods and various two-phase flow phenomena related to energy systems. Prerequisite: Nu Eng 221 or Chem Eng 231 or Mech Eng 231.

319 **Nuclear Power Plant Systems** (LEC 3.0) A study of current nuclear power plant concepts and the environmental economics and safety considerations affecting their design. Includes such topics as: thermodynamics, thermal hydraulics, and mechanical and electrical aspects of nuclear power facilities. Prerequisites: Nu Eng 205 and accompanied or preceded by Nu Eng 223.

322 **Nuclear System Design I** (LEC 1.0) A preliminary design of a nuclear system (e.g. a fission or fusion nuclear reactor plant, a space power system, a radioactive waste disposal system). Prerequisites: Nu Eng 223, 303, 319, preceded or accompanied by Nu Eng 341.

323 **Nuclear System Design II** (LEC 3.0) A complete design of a nuclear system (e.g. a fission or fusion nuclear reactor plant, a space power system, a radioactive waste disposal system). Prerequisite: Nu Eng 322.

333 **Applied Health Physics** (LEC 3.0) Radiation sources; external and internal dosimetry; biological effects of radiation; radiation protection principles; regulatory guides; radioactive and nuclear materials management. Prerequisite: Nu Eng 203 or Physics 107.
335 **Radiation Protection Engineering (LEC 3.0)**

341 **Nuclear Materials I (LEC 3.0)**
Fundamentals of materials selection for components in nuclear applications, design and fabrication of UO2 fuel; reactor fuel element performance; mechanical properties of UO2; radiation damage and effects, including computer modeling; corrosion of materials in nuclear reactor systems. Prerequisites: IDE 110; Nuc Eng 205; Nuc Eng 223; Met Eng 121. (Co-listed with Met Eng 341)

345 **Radioactive Waste Management And Remediation (LEC 3.0)**
Sources and classes of radioactive waste, long-term decay, spent fuel storage, transport, disposal options, regulatory control, materials issues, site selection and geologic characterization, containment, design and monitoring requirements, domestic and foreign waste disposal programs, economic and environmental issues, history of disposal actions, and conduct of remedial actions and clean up. Prerequisite: Math 204. (Co-listed with Geo 345)

351 **Reactor Kinetics (LEC 3.0)**
Derivation and solutions to elementary kinetics models. Application of the point kinetics model in fast, thermal reactor dynamics, internal and external feedback mechanism. Rigorous derivation and solutions of the space dependent kinetics model fission product and fuel isotope changes during reactor operation. Prerequisite: Nu Eng 205.

361 **Fusion Fundamentals (LEC 3.0)**
Introduction to the plasma state, single particle motion, kinetic theory, plasma waves, fusion, power generation, radiation mechanisms, inertial confinement and fusion devices, including conceptual fusion power plant designs. Prerequisite: Preceded or accompanied by Math 204.

381 **Probabilistic Risk Assessment I (LEC 3.0)**
A study of the techniques for qualitative and quantitative assessment of reliability, safety and risk associated with complex systems such as those encountered in the nuclear power industry. Emphasis is placed on fault tree analysis. Prerequisite: Nu Eng 205.

390 **Undergraduate Research (IND 0.0-6.0)**
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 **Special Problems (IND 0.0-6.0)**
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 **Special Topics (Variable 0.0-6.0)**
This course is designed to give the department an opportunity to test a new course. Variable title.

405 **Linear Transport Theory (LEC 3.0)**
Monoenergetic Boltzmann equation for neutral particles by the method of singular eigen-functions and polynomial expansions. Prerequisites: Nu Eng 303, Math 358.

410 **Seminar (RSD 0.0-6.0)**
Discussion of current topics.

411 **Computational Methods In Nuclear Engineering (LEC 3.0)**
Numerical solution of the neutron diffusion and transport equations utilizing the computer. The Sn and Pn methods are studied in detail. Prerequisites: Nu Eng 305 and Cmp Sc 218.

421 **Advanced Nuclear Reactor Design (LEC 3.0)**
Complete design of a nuclear power reactor, including analysis of reactor physics and engineering; layout and design of primary and secondary cooling systems, pressure vessel and thermal shields, control systems; introduction to the economics of nuclear power. Prerequisites: Nu Eng 311 and 321.

423 **Nuclear Reactor Safety (LEC 3.0)**
Study of safety criteria; reactor characteristics pertinent to safety; reactor transient behavior; loss of coolant accident analysis; emergency core cooling; fuel behavior during accident conditions; reactor risk analysis; current reactor safety issues. Prerequisites: Nu Eng 303 and 321.

425 **Plasma Physics (LEC 3.0)**
Fundamentals of kinetic, theory, fluid equations, MHD equations, and applications: wave propagation, shielding effect, diffusion, stability, and charged particle trajectories. Prerequisite: Nu Eng 361 for Nu Eng; Physics 411 for Physics.

431 **Radiation Shielding (LEC 3.0)**
Radiation sources; interactions of radiation with matter; dosimetry and radiation protection guidelines. The particle transport equation and methods of solving it; the Monte Carlo Method; special computational methods for neutron and gamma attenuation. Computer codes used in shielding. Shielding materials, shield design. Prerequisite: Nu Eng 303.

441 **Effects Of Radiation On Solids (LEC 3.0)**
The theories of the interaction of nuclear radiation with matter. Experimental approaches to radiation studies, including the sources and dosimetry. Nature and properties of crystal imperfections. The influence of radiation on physical, mechanical and surface properties of metals and alloys. Radiation effects on materials other than those incorporated in nuclear reactors. The annealing of defects. Prerequisite: Mt Eng 341.

481 **Probabilistic Risk Assessment II (LEC 3.0)**
A continuation of Nu Eng 381 with emphasis on reliability, importance, availability and frequency of occurrence. Advanced topics of phased mission analysis and dynamic fault tree analysis will be considered. The use of fault tree results with
Petroleum Engineering Courses

300 Special Problems (IND 1.0-3.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 1.0-3.0) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Offshore Petroleum Technology (LEC 3.0) An introduction to the development of oil and gas fields offshore, including offshore leasing, drilling, well completions, production facilities, pipelines, and servicing. Subsea systems, and deepwater developments are also included. This course is suitable for mechanical, electrical and civil engineering students interested in ultimately working offshore. Prerequisite: Pet Eng 131 recommended.

303 Environmental Petroleum Applications (LEC 3.0) This course is a study of environmental protection and regulatory compliance in the oil and gas industry. The impact of various environmental laws on drilling and production operations will be covered. Oilfield and related wastes and their handling are described. Federal, state and local regulatory agencies are introduced, and their role in permitting and compliance monitoring is presented. Legal and ethical responsibilities are discussed. Prerequisite: Senior standing.

308 Applied Reservoir Simulation (LEC 3.0) Simulation of actual reservoir problems using both field and individual well models to determine well spacing, secondary recovery prospects, future rate predictions and recovery, coning effects, relative permeability adjustments and other history matching techniques. Co-requisite: Pe Eng 257.

310 Seminar (RSD 1.0) Discussion of current topics. (Course cannot be used for graduate credit). Prerequisite: Senior standing in Pe Eng. (Co-listed with Geology 310, Geo Eng 310)

314 Advanced Drilling Technology (LEC 3.0) In-depth studies of cost control; hole problems; well planning; drilling fluids and cuttings transport; hydraulics; pressure control, directional drilling; drill bits; cementing; fishing; wellhead and tubular designs; computer modeling of drilling systems optimized design of drilling procedure. Prerequisites: Pe Eng 131, Cv Eng 230, Cmp Sc 73.

316 Well Performance and Production Systems (LEC 2.0 and LAB 1.0) Introduction to the producing wellbore system; inflow performance relationships, effect of formation damage on well flow, nodal systems analysis; perforating methods and their effect on inflow; stimulation treatments to enhance well performance. Introduction to well completions, diagnostics and well servicing. Overview of production systems. Prerequisite: Preceded or accompanied by Pet Eng 241.

323 Artificial Lift (LEC 3.0) This course is a study of artificial lift methods used to produce liquids (oil/water) from wellbores. Methods covered include sucker rod (piston) pumps, electric submersible pumps, gas lift, hydraulic lift and plunger lift. Prerequisite: Pet Eng 241 or equivalent.

329 Applied Petroleum Reservoir Engineering (LEC 3.0) Quantitative study of oil production by natural forces, gas cap, water influx, solution gas, etc.; material balance equations, study of gas, non- retrograde gas condensate, and black oil reservoirs. Predictive calculations of oil recovery from different reservoir types. Prerequisites: Pe Eng 241 and 242.

331 Drilling and Well Design (LEC 2.0 and LAB 1.0) This course covers drilling fluids, including mixing and analysis of rheological properties; pressure loss calculations; casing design; well cementing; pore pressure and geomechanical considerations in drilling; completion equipment, and completion design. Prerequisite: receded or accompanied by CE 230.

338 Finite Element Analysis with Applications in Petroleum Engineering (LEC 3.0 and LAB 1.0) This course introduces finite element analysis (FEA) methods and applications of FEA in subsurface engineering. The course is intended to provide a fundamental understanding of FEA software and experience in creating meshes for petroleum reservoirs or other subsurface features. Prerequisites: Pet Eng 241; Geology 220 or Min Eng 232.

341 Well Test Analysis (LEC 2.0 and LAB 1.0) Causes of low well productivity; analysis of pressure buildups tests, drawdown tests, multi-rate tests, injection well fall off tests, and open flow potential tests; design of well testing procedures. Prerequisites: Pet Eng 241 and Math 204.

347 Petroleum Engineering Design (LEC 3.0) Senior capstone design project(s) based on industry data. Application of reservoir engineering: drilling and production engineering principles to evaluate and solve an industry problem such as a new field development, evaluation of an existing reservoir asset, or analysis of field re-development. Prerequisites: Pet Eng 241, Pet Eng 316, and senior standing.

357 Petroleum Economics and Asset Valuation (LEC 3.0) Uncertainty in the estimation of oil and gas reserves; tangible and intangible investment costs; depreciation; evaluation of producing properties; federal income tax considerations; chance factor and risk determination. Petroleum economic evaluation software is introduced. Prerequisites: Pet Eng 241, Econ 121 or Econ 122.

360 Natural Gas Engineering (LEC 3.0) Gas reserves estimation, deliverability, and future production performance prediction. Deliverability testing of gas wells including isochronal, flow after flow, drawdown and buildup. Gasfield development and underground storage. Gas production metering gauging and transmission. Prerequisite: Preceded or accompanied by Pet Eng 241.

366 Mechanical Earth Modeling (LEC 3.0) This course introduces the work process necessary to create the Mechanical Earth Model's principle components, formation in-situ stress and strength. 1-D model design methods are reviewed and extended to 3-D; and the integration of MEM with well design is shown. An MEM model will be created and compared to actual field results. Prerequisite: Pet Eng 232 or Geology 220 or Min Eng 232.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects of projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

406 Advanced Reservoir Simulation (LEC 3.0) Advanced techniques in reservoir simulation. Prerequisite: Pe Eng 308.

410 Seminar (RSD 0.0-6.0) Discussion of current topics.

417 A Survey Of Improved Recovery Processes (LEC 3.0) An overview of current advanced recovery methods including secondary and tertiary processes. An explanation of the primary energy mechanism and requirements of these methods and an analysis of laboratory results and their subsequent field applications. Prerequisite: Pe Eng 335.

437 Advanced Reservoir Engineering I (LEC 3.0) Advanced study of producing mechanisms. Prerequisites: Pe Eng 308 and Pe Eng 341.

438 Advanced Reservoir Engineering II (LEC 3.0) Flow through porous media: derivations and solutions for steady, semi-steady, and transient flow of single and multiple phase flow through porous media. Prerequisite: Pe Eng 241.

490 Research (IND 0.0-12.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

491 Internship (IND 0.0-15.0) Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.
Physics Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Physics For Elementary School Teachers (LEC 2.0 and LAB 1.0) Nonmathematical review of the fundamental ideas of physics, including mechanics, matter, energy, sound, electricity, magnetism, astronomy, and light. Emphasis is placed on the development of hands-on activities. (For elementary school teachers or Master of Science for Teachers candidates only.)

303 Physics For Secondary School Teachers (LEC 3.0) A review of the fundamental ideas of physics, including mechanics, matter, energy, sound, electricity, magnetism, and light with an emphasis on how mathematics can be used to help understand the underlying concepts. (For secondary teachers or Masters of Science Teachers candidates only.) Prerequisites: Math 22 and admission to the MST program.

305 Astrophysics (LEC 3.0) The structure, physical characteristics and evolution of stars, binary systems, nebulae and galaxies. Prerequisite: Physics 107.

306 Physics, Energy, and the Environment (LEC 3.0) Applications of physics to the environment, including energy, its conservation and transformation, environmental consequences of energy use; world energy resources; atmospheric physics; sources of air, water, and land pollution, and the role physics plays in controlling those resources. May not be used as a 300-level elective for a B.S. in Physics. Prerequisite: Admissions to the MST program.

307 Modern Physics II (LEC 3.0) A continuation of Physics 207. An introduction to nuclear and particle physics. Topics include nuclear models, decays, and reactions, and elementary particles and fundamental forces. Prerequisites: Math 204 or 229, and either Physics 107 with consent of instructor or Physics 207.

308 Physical Mechanics (LEC 3.0) This course covers topics of rigid body motion in three dimensions, moving coordinate frames, two body collisions, conservation laws, small oscillations, generalized coordinates, and LaGrange's and Hamilton's equations. Prerequisite: Physics 208.

309 Astrophysical Concepts (LEC 3.0) A comprehensive course in modern astrophysics. Topics include: Earth and sky, planetary science, stellar structure and evolution, galaxies, and structure and evolution of the universe. The course includes hands-on computer simulation and telescope use. (For secondary teachers or Master of Science for Teachers candidates.) Prerequisite: Math 22 or admission to the MST program.

311 Thermal Physics (LEC 3.0) A study of the equilibrium states of matter as governed by the first and second laws of thermodynamics. Emphasis is placed on the microscopic approach with an introduction to statistical mechanics. Topics include the kinetic theory of (uniform) gases, phase equilibria in pure systems, and an introduction to quantum statistics. Prerequisite: Physics 107 or 207.

313 Introduction To General Relativity (LEC 3.0) An introduction to the theory of general relativity. Topics covered include the formalism of general relativity, Einstein's gravitational field equations, the Schwarzschild solution, black holes, and cosmological models of the universe. Prerequisite: Physics 208.

321 Electricity And Magnetism II (LEC 3.0) A continuation of Physics 221. Topics covered include the magnetostatic field, the magnetic vector potential, the magnetostatic field in matter, electrodynamics, and electromagnetic waves. Prerequisite: Physics 221.

322 Advanced Physics Laboratory I (LAB 3.0) A laboratory study of the principles of basic experiments in all major branches of physics. The experiments stress design of apparatus, and procedures and analysis in projects involving electronic, optical, mechanical, and vacuum techniques. Prerequisite: Physics 212.

323 Classical Optics (LEC 3.0) Physical optics and advanced topics in geometrical optics. Topics include ray propagation, electromagnetic propagation, mirrors, lenses, interference, diffraction, polarization, imaging systems, and guided waves. Prerequisites: Math 22 and Physics 24 or 25. (Co-listed with El Eng 323)

324 Fourier Optics (LEC 3.0) Applications of Fourier analysis and linear system theory to optics. Topics include scalar diffraction theory, Fourier transforming properties of lenses, optical information processing, and imaging systems. Prerequisites: El Eng 261 & 275 or Physics 208 & 321. (Co-listed with El Eng 324)

326 Fiber And Integrated Optics (LEC 3.0) Introduction to optical waveguides and their applications to communication and sensing. Topics include dielectric waveguide theory, optical fiber characteristics, integrated optic circuits, coupled-mode theory, optical communication systems, and photonic sensors. Prerequisite: El Eng 275 or Physics 321. (Co-listed with El Eng 326)

332 Advanced Physics Laboratory II (LAB 3.0) A senior laboratory involving experimental design. The student must specify his objectives, assemble apparatus; take measurements, analyze the results, form conclusions, write a report, and deliver an oral presentation of the results. Prerequisite: Physics 212.

351 Computational Physics (LEC 3.0 and LAB 1.0) An introduction to modern computer simulations for solving physics problems. The course will be
project-oriented with examples including planetary motion, chaotic dynamics, quantum scattering, structure of atoms and clusters, molecular dynamics, and Monte-Carlo simulations. Prerequisites: Physics 107 or Physics 207; Math 204; programming experience.

355 Chaos, Fractals, and Nonlinear Dynamics (LEC 3.0) An introduction into nonlinear dynamics, deterministic chaos, and fractals. Topics covered include phase plane analysis, iterated maps, routes to chaos, Lyapunov exponents, strange attractors and pattern formation with applications to chaotic vibrations, population dynamics, chemical oscillations and lasers. Prerequisites: Math 204; Physics 24 or Physics 25.

357 Subatomic Physics (LEC 3.0) An introduction to elementary particles. Topics include particle properties, nuclear forces, particle interactions, the Standard Model for quarks and leptons, fundamental forces in gauge field theory models, and the role of elementary particle interactions in cosmology. Prerequisite: Physics 307.

361 Introduction To Quantum Mechanics (LEC 3.0) The fundamental concepts, postulates and methods of quantum mechanics and their applications to physical systems. Topics include solutions of the Schrödinger equation for simple systems and operator methods. Prerequisites: Physics 107 or 207, 208.

367 Plasma Physics (LEC 3.0) Single-particle motions, plasmas as fluids, waves, diffusion, equilibrium, stability, kinetic theory, nonlinear effects Prerequisites: Math 204 and Physics 107 or 207 or Nu Eng 203.

371 Laser Physics (LEC 3.0) The generation of coherent radiation by lasers and the interaction of laser radiation with matter. Topics include stimulated emission, population inversion, optical cavities, optical gain, properties of laser media and other applications. Prerequisite: Physics 107 or 207.

377 Principles Of Engineering Materials (LEC 3.0) Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Ae Eng 377, Ch Eng 347, Mt Eng 377, Cr Eng 377)

381 Elementary Solid State Physics (LEC 3.0) An introductory study of the structure and physical Properties of crystalline solids. Included are topics in crystal structure, x-ray diffraction, crystal binding, thermal properties of solids, free electron theory and elementary energy band theory. Prerequisites: Math 204 and Physics 107 or 207.

390 Undergraduate Research (IND 0.0-6.0) This course is designed for the undergraduate student who wishes to engage in research. It is not to be used for graduate credit nor for more than six credit hours of undergraduate credit. The subject and credit are to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

404 Advanced Physics Laboratory Teaching Methods (LEC 3.0) Objectives, methods and problems related to teaching of introductory physics, with an emphasis on laboratory instruction, the development of educational laboratory experiments and techniques, student learning styles, student assessment, student work groups, computer-based data acquisition, and communication techniques. Prerequisite: Graduate standing.

409 Classical Mechanics I (LEC 3.0) Methods of Newton, Lagrange, and Hamilton applied to the motion of particles and rigid bodies. Introduction to canonical transformations and Poisson brackets. Classical scattering and small oscillations. Prerequisites: Math 204, Physics 309.

410 Seminar (RSD 0.0-6.0) Discussion of current topics.

411 Electrodynamics I (LEC 3.0) A rigorous development of the fundamentals of electromagnetic fields and waves. Electrostatics, magnetostatics, Maxwell's equations--Green's function, boundary value problems, multipoles, conservation laws. Prerequisites: El Eng 273 and Math 325; Physics 321.

413 Statistical Mechanics (LEC 3.0) A study of statistical ensembles; Maxwell-Boltzmann, Fermi-Dirac and Einstein-Bose distribution laws, application to some simple physical systems. Prerequisites: Physics 309, 361.

423 Electrodynamics II (LEC 3.0) A continuation of Physics 411. Applications of time-dependent Maxwell's equations to such topics as plasmas, wave guides, cavities, radiation; fields of simple systems and multipoles. Relativity; covariant formulation of Maxwell's equations and conservation laws, fields of uniformly moving and accelerated charges. Prerequisite: Physics 411.

461 Quantum Mechanics I (LEC 3.0) Basic formalism applied to selected problems. Schrödinger equation and one dimensional problems, Dirac notation, matrix mechanics, harmonic oscillator, angular momentum, hydrogen atom, variational methods, introduction to spin. Prerequisite: Physics 361 or equivalent.

463 Quantum Mechanics II (LEC 3.0) Perturbation theory, treatment of spin, angular momentum addition, Wigner-Eckart theorem; scattering theory including partial wave analysis, born approximation, and formal scattering theory; identical particles, introduction to second quantization, and structure of complex atoms. Prerequisite: Physics 461.
467 Quantum Statistical Mechanics (LEC 3.0) Techniques for calculation of the partition function with examples drawn from interacting Fermi gas, interacting Bose gas, superconductors, and similar sources. Prerequisites: Physics 413 and 463.

471 Atomic And Molecular Structure (LEC 3.0) Applications of quantum mechanics to the structure of atoms and molecules; perturbation and variational calculations, self-consistent field, multiplets, angular momenta, Thomas-Fermi model, diatomic molecules, spectral intensities. Prerequisite: Physics 461.

473 Atomic Collisions (LEC 3.0) Basic quantum mechanical concepts involved in atomic scattering theory. Topics include the Born approximation elastic collisions, and inelastic collisions. Other specific topics will be chosen from the general areas of electron, ion, and atom collisions with atoms and molecules. Prerequisite: Physics 471 or 463.

481 Physics Of The Solid State (LEC 3.0) Crystal symmetry, point and space groups, lattice vibrations, phonons, one-electron model, Hartree-Fock approximation, elementary energy band theory, transport properties, the Boltzmann equation, introduction to superconductivity, semiconductors, and magnetism. Prerequisite: Physics 461.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

494 Coop Registration (IND 1.0) Doctoral candidates participating in a cooperative program with another UM campus must enroll for one hour of credit each registration period-until degree is completed. Failure to do so may invalidate candidacy. Billing is automatic as is registration upon payment.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Statistics Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

305 Making Sense Of Data For Elementary School Teachers (LEC 3.0) An activity based course that is intended to provide elementary school teachers with the skills necessary to implement the Probability & Statistics strand of the American Statistical Association of the National Council of Teachers of Mathematics (NCTM) joint. Prerequisite: Graduate Standing.

306 Making Sense Of Data For Middle School Teachers (LEC 3.0) An activity based course that is intended to provide middle school teachers with the skills necessary to implement the Probability & Statistics strand of the American Statistical Association of the National Council of Teachers of Mathematics (NCTM) joint.

307 Making Sense Of Data For High School Teachers (LEC 3.0) An activity based course that is intended to provide high school teachers with the skills necessary to implement the Probability & Statistics strand of the American Statistical Association of the National Council of Teachers of Mathematics (NCTM) joint.

314 Applied Time Series Analysis (LEC 3.0) Introduction to time series modeling of empirical data observed over time. Topics include stationary processes, autocovariance functions, moving average, autoregressive, ARIMA, and GARCH models, spectral analysis, confidence intervals, forecasting, and forecast error. Prerequisites: One of Stat 213, 215, 217, 343 and one of Math 203, 208, or 308.

320 Statistical Methods (LEC 3.0) A continuation of Stat 215 with emphasis on statistical methods. Topics would include further work on regression analysis, control charts, acceptance sampling, nonparametric statistics, goodness of fit tests, reliability and life-testing, analysis of experimental designs. Prerequisite: Stat 215.

325 Introduction to Biostatistics (LEC 3.0 and LAB 1.0) Introduction to common biostatistical methods for designing research studies, collecting and analyzing data, with application to problems originating from the biological, environmental, and health sciences. Topics include randomization, means comparisons, ANOVA, regression, and analysis of count data. Prerequisite: regression or equivalent.

343 Probability And Statistics (LEC 3.0) Introduction to the theory of probability and its applications, sample spaces, random variables, binomial, Poisson, normal distributions, derived distributions, and moment generating functions. Prerequisite: Math 22.
344 **Mathematical Statistics** (LEC 3.0) A continuation of Stat 343 with introduction to the theories of point estimation, hypothesis testing, and interval estimation. Includes sufficiency, completeness, likelihood and how they apply to the exponential family. Prerequisite: Stat 343.

346 **Regression Analysis** (LEC 3.0) Simple linear regression, multiple regression, regression diagnostics, multicollinearity, measures of influence and leverage, model selection techniques, polynomial models, regression with autocorrelated errors, introduction to non-linear regression. Prerequisites: Math 22 and one of Stat 211, 213, 215, 217, or 343. (Co-listed with Cmp Sc 366)

353 **Statistical Data Analysis** (LEC 3.0) Introduction to methods for analyzing statistical data from experiments and surveys. Analysis of variance, correlation, introduction to regression techniques, contingency tables, non-parametric techniques and introduction to modern statistical software. Prerequisites: Math 22 and one of Stat 115, 213, 215 and 217.

390 **Undergraduate Research** (IND 0.0-6.0) This course is designed for the undergraduate student who wishes to engage in research. It is not to be used for graduate credit nor for more than six credit hours of undergraduate credit. The subject and credit are to be arranged with the instructor. Prerequisite: Consent of instructor.

400 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects in the department. Consent of instructor required.

401 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

414 **Statistical Time Series Analysis** (LEC 3.0) A formal introduction to the fundamentals of statistical modeling and analysis of discrete time series. Topics include autoregressive and moving average processes, ARMA models, second order stationarity, vector processes, autocorrelation function, Fourier representation, estimation and prediction of time series. Prerequisites: Stat 343 and Math 203 or 208.

438 **Stochastic Optimization** (LEC 3.0) Introduction to stochastic modeling theory and application. Topics include probability theory, Markov processes, renewal theory, and queuing theory. Additional topics include stochastic dynamic programming and stochastic programming. Prerequisite: Eng Mgt 365. (Co-listed with Eng Mgt 438)

441 **Stochastic Processes** (LEC 3.0) Development and application of Poisson and nonhomogeneous Poisson processes; renewal processes; Markov chains and processes including birth and death processes; and normal processes, including Brownian motion. Prerequisites: Stat 343 and Math 204 or 229.

443 **Nonparametric Statistical Methods** (LEC 3.0) A course covering distribution free statistical methods. Topics include: order statistics, tests of hypotheses for one-sample and two-sample problems, analyses of variance, goodness-of-fit tests, runs test, independence and regression problems, point and interval estimation, ARE. Prerequisite: Stat 344.

444 **Design And Analysis Of Experiments** (LEC 3.0) Experimental designs and their statistical analysis. Includes completely randomized designs, complete and incomplete blocking designs, factorial and fractional factorial experiments, multiple comparisons, response surface analysis. Prerequisites: One of Stat 353, Eng Mgt 387 and one of Stat 211, 213, 215, 217, 343; or Stat 343 and one of Stat 211, 213, 215, 217.

446 **Intermediate Probability** (LEC 3.0) Probability spaces, random variables, distribution functions, expectations, independence, convergence theorems, characteristic functions, moment generating functions, and central limit theorem. Prerequisites: Stat 344 and Math 315.

453 **Linear Statistical Models I** (LEC 3.0) Includes a development of the theory of the distribution of quadratic forms, and the estimation of parameters and testing hypotheses in linear statistical models. Prerequisites: Math 208 and Stat 343 and either Stat 353 or 344.

454 **Linear Statistical Models II** (LEC 3.0) Includes the theory of polynomial models, regression models, experimental design models, incomplete block models, nonlinear models, with emphasis on optimum properties of point and interval estimation and the power of tests. Prerequisite: Stat 453.

458 **Advanced Mathematical Statistics II** (LEC 3.0) A continuation of Stat 457 with the emphasis on hypothesis testing. Prerequisite: Stat 457.

470 **Theory Of Reliability** (LEC 3.0) Statistical analyses of life-testing distributions such as the Weibull, gamma, exponential, logistic, and normal. Reliability estimation, tolerance limits, censored sampling, and application of Monte-Carlo simulation. Prerequisite: Stat 344.

490 **Research** (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 **Oral Examination** (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be
processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (LEC 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Systems Engineering Courses

300 Special Problems (IND 1.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 1.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

348 Wireless Networks (LEC 2.0 and LAB 1.0) Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols, wireless LAN, IEEE 802.11, and adhoc and sensor networks. Prerequisites: Hardware competency, Elec Eng 243 or Comp Eng 213 and graduate standing. (Co-listed with Comp Eng 348 and Elec Eng 348)

367 Computational Intelligence (LEC 3.0) Introduction to Computational Intelligence (CI), Biological and Artificial Neuron, Neural Networks, Evolutionary Computing, Swarm Intelligence, Artificial Immune Systems, Fuzzy Systems, and Hybrid Systems. CI application case studies covered include digital systems, control, power systems, forecasting, and time-series predictions. Prerequisite: Stat 217. (Co-listed with Elec Eng 367 and Comp Eng 358)

368 System Engineering and Analysis I (LEC 3.0) The concepts of Systems Engineering are covered. The objective is to provide the basic knowledge and tools of transforming an operational need into a defined system configuration through the iterative process of analysis, system integration, synthesis, optimization, and design. Prerequisite: Graduate or senior standing. (Co-listed with Eng Mgt 368)

378 Introduction to Neural Networks & Applications (LEC 3.0) Introduction to artificial neural network architectures, adaline, madaline, back propagation, BAM, and Hopfield memory, counterpropagation networks, self organizing maps, adaptive resonance theory, are the topics covered. Students experiment with the use of artificial neural networks in engineering through semester projects. Prerequisite: Math 204 or 229. (Co-listed with Cmp Sc 378, El Eng 368)

400 Special Problems (IND 1.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 1.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

404 Data Mining & Knowledge Discovery (LEC 3.0) Data mining and knowledge discovery utilizes both classical and new algorithms, such as machine learning and neural networks, to discover previously unknown relationships in data. Key data mining issues to be addressed include knowledge representation and knowledge acquisition (automated learning). Prerequisites: Comp Sci 304 or 347, Stat 215. (Co-listed with Comp Sci 404 and Comp Eng 404)

408 Financial Risk Management (LEC 3.0) Techniques and methods for managing financial risk, including portfolio theory, Monte Carlo methods, ARIMA, time series forecasting, Value-at-Risk, stress testing, extreme value theory, GARCH and volatility estimation, random variables and probability distributions, real options, decision trees, utility theory, statistical decision techniques, and game theory. Prerequisites: Eng Mgt 308, 352, or equivalent. (Co-listed with Eng Mgt 408)

410 Seminar (RSD 0.0-6.0) Discussion of current topics.

411 Systems Engineering Management (LEC 3.0) This course covers modern methods of effective management of complex systems, and systems of systems. Effective team building and integrated product and process development in a diverse and global work environment is the central theme. Topics include leadership, quality tools, concurrent engineering, communication and performance evaluation. Prerequisite: Graduate Standing.

412 Complex Engineering Systems Project Management (LEC 3.0) Explore issues related to planning, scheduling, and controlling complex engineering projects. Issues specific to distributed project planning and control, development of Systems Engineering Management Plan, Integrated Master Schedule and Integrated Master Plan, and monitoring technical performance, schedule and risk will be discussed. Prerequisite: Graduate Standing.

413 Economic Analysis of Systems Engineering Projects (LEC 3.0) Economic evaluation of complex engineering systems for government defense and commercial industries; choosing system alternatives using engineering economic analysis; quantitative techniques for evaluating non-monetary consequences; life cycle costing, formal treatment of risk, uncertainty, and project cost monitoring. Prerequisite: Graduate Standing.
419 Network Centric Systems (LEC 3.0) Network-centric systems comprises a diverse category of complex systems with the primary purpose is providing network-type services. Network-centric systems are also known as collaborative systems. This course address the intersection between network engineering and the needs of systems architecting and engineering. Prerequisite: Sys Eng 469 or graduate standing. (Co-listed with Comp Eng 419)

427 Function-Based Risk Analysis (LEC 3.0) Risk analysis of products and systems will be explored using product functionality as the starting point. Traditional probabilistic risk assessment techniques will be covered along with recent approaches that use historical data to produce automatic risk assessments. Prerequisite: Graduate standing. (Co-listed with IDE 427)

433 Distributed Systems Modeling (LEC 3.0) This course will discuss issues related to distributed systems architecting, modeling, analysis and representation, with specific focus on discrete-part manufacturing domain. Distributed modeling techniques and other model decomposition methods using simulation modeling and scalability issues will also be addressed.

443 Wireless Ad hoc and Sensor Networks (LEC 3.0) Introduction to ad hoc and sensor networks, IEEE standards, heterogeneity, quality of service, wireless channel issues, energy awareness, power and topology control, routing, scheduling, rate adaptation, self-organization, admission and flow control, energy harvesting, security and trust levels, hardware and applications. Prerequisite: Comp Eng 348 or Comp Eng 349 or equivalent. (Co-listed with Comp Eng 443 and Elec Eng 443)

449 Network-Centric Systems Reliability and Security (LEC 3.0) This course presents reliability and fault tolerance for network-centric systems, including models, metrics, and analysis techniques. This course also concentrates on security, including technical tools and methods for audit and assessment as well as management and policy issues. Prerequisite: Sys Eng/Comp Eng 419 or Comp Eng 349. (Co-listed with Comp Eng 449)

458 Adaptive Critic Designs (LEC 3.0) Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisite: Elec Eng 368 Neural Networks or equivalent (Computational Intelligence Comp Eng 301) (Co-listed with Comp Eng, Elec Eng, Mech Eng and Aero Eng 458)

468 Systems Engineering Analysis II (LEC 3.0) The objective is to provide the advanced knowledge and tools of transforming an operational need into a defined system configuration through the iterative process of analysis, system integration, synthesis, optimization and design. These tools and concepts are reinforced with projects and case studies. Prerequisites: Graduate standing and Sys Eng 368. (Co-listed with Eng Mgt 468)

469 Systems Architecting (LEC 3.0) The objective of the course is to provide the basic tools and concepts of systems architecting for complex systems design and operations. The following topics are covered: The need for the architect and architecting teams, The process of architecting, Architecting methods, Design of architectures, The Architect's Role during System life Cycle. Prerequisite: Graduate standing. (Co-listed with Eng Mgt 469)

478 Advanced Neural Networks (LEC 3.0) Advanced artificial neural network architectures, namely; Radial-Basis Function Networks, Support Vector Machines, Committee Machines, Principal Components Analysis, Information-Theoretic Models, Stochastic Machines, Neurodynamic Programming, Temporal Processing are the topics covered. Prerequisite: Sys Eng 378 or equivalent neural network course.

479 Smart Engineering System Design (LEC 3.0) This course covers the emerging approaches for designing of smart engineering systems architectures for complex systems through evolutionary acquisition, namely; adaptive architecture generation for family of systems, complexity theory, evolutionary programming, fuzzy logic, collaborative behavior, artificial life, and chaos. Prerequisite: Sys Eng 378 or graduate standing.

480 Investment (LEC 3.0) An introduction to the theory and practice of investment, including financial markets and instruments, security trading, mutual funds, investment banking, interest rates, risk premiums, the capital asset pricing model, arbitrage pricing theory, market efficiency, bonds and the fixed income market, equity valuation, financial markets and instruments, security trading, theory and practice of investment, including

481 Financial Engineering (LEC 3.0) An introduction to financial engineering, with an emphasis on financial derivatives, including the future markets, the pricing of forwards and futures, forward rate agreements, interest and exchange rate futures, swaps, the options markets, option strategies, the binomial and Black-Scholes models for option valuation, the option Greeks, and volatility smiles. Prerequisites: Eng Mgt 308, Eng Mgt 352; Eng Mgt 480 or Sys Eng 480 or equivalent. (Co-listed with Eng Mgt 481)

490 Research (IND 1.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required. Prerequisite: Graduate standing.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examination for on-campus MS/PhD students may be processed during intersession. Off-campus MS students must
be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive exam (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from campus must continue to enroll for at least one credit hour each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Technical Communication Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Research Methods in Technical Communication (LEC 3.0) Students learn essential research methods in technical communication, including audience analysis, interviewing techniques, working with subject matter experts, and experimental research design. Prerequisites: TCH COM 65 AND TCH COM 240 or English 65 and English 240.

310 Seminar (RSD 0.0-6.0) Discussion of current topics. Prerequisite: TCH COM 65 and TCH COM 240.

331 Technical Editing (LEC 3.0) The principles and practices of technical editing, including usability, audience analysis, contextual editing, the conventions of scientific and technical communication, and the role of the editor in document development and publication. Students will also learn standard practices of copy editing and the use of style guides. Prerequisites: TCH COM 65 AND TCH COM 240.

333 Proposal Writing (LEC 3.0) Familiarizes students with many aspects of writing proposals for various purposes in academic, professional, and public spheres. Offers students opportunities to write documents to promote their academic, professional, or personal goals or those of their organization(s). Prerequisite: One semester of college composition or technical writing.

340 Theory of Visual Technical Communication (LEC 3.0) A study of the relationships between visual and conceptual elements of technical communication. Prerequisites: TCH COM 65 and TCH COM 240 or English 65 and English 240.

361 History of Technical Communication (LEC 3.0) Introduction to the roles of the technical communicator and the technologies of communication from ancient cultures to the present. Prerequisites: TCH COM 65 and TCH COM 240.

380 Internship (IND 0.0-6.0) Internship will involve students applying critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student's background and the setting. Prerequisites: Senior status; must have completed 24 hours in the major core curriculum.

385 Theory and Practice of Technical Communication (LEC 3.0) This capstone course enables the student to work on individual and group projects that put into play the theories and practices of technical communication. Students are expected to develop professional portfolios. Prerequisites: Senior Status and TCH COM 65 and TCH COM 240 or English 65 and English 240.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

402 Foundations of Technical Communication (LEC 3.0) Introduction to themes and issues, methods, and genres that define technical communication.

403 Theoretical Approaches to Technical Communication (LEC 3.0) Examines representative theories and research in written, oral, and visual modes of technical communication. Includes such issues as ethics, document design, rhetorical methods, and people-machine communication.

404 Teaching of Technical Communication (LEC 3.0) Provides a theoretical and pedagogical foundation for teaching workshops and undergraduate courses in technical communication. Includes both traditional and electronic settings.

410 Seminar (RSD 0.0-6.0) Discussion of current topics.

411 International Technical Communication (LEC 3.0) Examines complexity of communication of technical information worldwide. Includes topics such as graphics, icons, symbols; user interface design; cross-cultural communication.

420 Advanced Theories of Visual Technical Communication (LEC 3.0) An in-depth investigation and analysis of historical and contemporary visual theories and their impact on technical communication, including visual rhetoric, semiotics, and design and critical theories.

450 Information Management in Technical Communication (LEC 3.0) Study of and practice in directing projects related to such areas as multimedia, web sites, strategic planning, newsletters. Includes writing planning documents,
selecting team members, synchronizing assignments, testing prototypes, and issuing a final report.

490 **Research** (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 **Oral Examination** (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/ comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.