Course Information

Course Numbers

This section has been prepared to give you a listing and description of the approved graduate level courses at the Missouri University of Science and Technology. Courses listed are those approved at the time this publication went to press. Changes are made at regular intervals. Electronic catalog descriptions, which are updated during the academic year, are available on the Web at: http://registrar.mst.edu/cataloginfo/cataloginfo.html or on JoeSS. This will enable you to keep abreast of new course additions. For current information on when courses are available, consult the campus schedule of classes available from the Registrar’s Office, 103 Parker Hall.

0-99 Courses normally taken by freshman and sophomores. May not be used as any part of a graduate degree program.

100-199 Courses normally taken by upper-class undergraduate students. May not be used as any part of a graduate degree program.

200-299 Upper-class undergraduates and restricted graduate courses. Courses so numbered do not give graduate credit for an advanced degree in the field of the department offering the course.

300-399 Upper-class undergraduates and graduate students. Commonly approved for graduate programs only when the student is regularly enrolled in a graduate school and then only if the course fits the purpose of the degree program.

400-499 Graduate courses and research. Undergraduate and postbaccalaureate students are not normally eligible to enroll in 400-level courses.

Course Information

The number in parentheses following the name of the course indicates the number of credit hours given for successfully completing the course. It also reflects the section type; for example, (LEC 3.0) designates a lecture course of three hours credit; (LAB 1.0) designates a laboratory course of one-hour credit and (IND 0.0-15.0) designates independent study or research with variable hours. A lecture credit hour is usually the credit granted for satisfactorily passing a course of approximately 15 classroom hours. A laboratory course of one-hour credit would normally meet three classroom hours per week for 15 weeks.

Three credit hour courses normally meet 50 minutes three times per week, or 75 minutes twice a week, for 15 weeks. The time in class is the same in each case. If you have two classes in succession, there should be at least 10 minutes between classes. Classes meeting Monday-Wednesday-Friday will normally begin on the hour. Classes meeting Tuesday-Thursday will normally alternate between the hour and half hour, beginning at 8:00 a.m. In addition, there is an Academic Free hour 12:00-1:00 on Monday, Wednesday, and Friday.

Students must have completed the stated prerequisite(s) for the course for admission to the course or obtain the ‘Consent of the Instructor’ of the course.
Aerospace Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

307 Vibrations I (LEC 3.0) Equations of motion, free and forced vibration of single degree of freedom systems. Natural frequencies, resonance, modes of vibration and energy dissipation are studied. The vibration of continuous systems is introduced. Prerequisites: Mc Eng 211 and 213, or Ae Eng 213 and Math 204. (Co-listed with Mech Eng 307)

309 Engineering Acoustics I (LEC 3.0) Introduction to acoustical theory and measurement with emphasis on mechanical and aerospace engineering applications. Plane and spherical wave propagation, resonators and filters, absorption, room acoustics, human response to noise, noise legislation, noise control. Use of common instrumentation in several projects. Prerequisites: Mc Eng 211 & 213, or Ae Eng 213 & Math 204. (Co-listed with Mc Eng 309)

311 Introduction To Composite Materials & Structures (LEC 3.0) Introduction to fiber-reinforced composite materials and structures with emphasis on analysis and design. Composite micromechanics, lamination theory and failure criteria. Design procedures for structures made of composite materials. An overview of fabrication and experimental characterization. Prerequisite: Civ Eng 110. (Co-listed with Mech Eng 382)

313 Intermediate Dynamics Of Mechanical And Aerospace Systems (LEC 3.0) Principles of dynamics are applied to problems in the design of mechanical and aerospace systems; basic concepts in kinematics and dynamics; dynamics of systems of particles; dynamics of rigid bodies, three-dimensional effects in machine elements; dynamic stability, theory and applications; methods of analytical dynamics. Prerequisite: Mc Eng 213 or Ae Eng 213. (Co-listed with Mc Eng 313)

314 Spaceflight Mechanics (LEC 3.0) Further topics in orbital mechanics. Time equations, Lambert's problem, patched-conic method, orbital maneuvers, orbit determination, orbit design, re-entry problem. Prerequisite: Ae Eng 213.

315 Concurrent Engineering I (LEC 3.0) Students will be introduced to the concurrent engineering approach to product development. They will learn to set up quantitative requirements and then use a quantitative rating process to identify the critical requirements relating to the desired product. The interaction between design, manufacturing, assembly, cost, and supportability will be covered. The students will form teams and practice the concurrent engineering process for simple products. Prerequisites: Mech Eng 213 or Aero Eng 231, and Civ Eng 110. (Co-listed with Mech Eng 315)

316 Concurrent Engineering II (LAB 3.0) Students will form groups and then using the electronic data based approach apply the concurrent engineering process to develop products. Areas to be covered are the customer, design, manufacturing, assembly, cost and supportability. Prerequisite: Ae Eng 315 or Mc Eng 315. (Co-listed with Mc Eng 316)

319 Advanced Thermodynamics (LEC 3.0) After a short review of classical thermodynamics, the elements of chemical reactions, chemical equilibrium, statistical thermodynamics, and the basic concepts of kinetic theory are presented. Prerequisite: Mech Eng 219. (Co-listed with Mc Eng 319)

320 Advanced Mechanics of Materials (LEC 3.0) Comprehensive insight into mechanics of materials. Topics to include: theories of failure, torsion of noncircular sections, shear flow and shear center, unsymmetric bending, bending of curved members, beams on elastic foundation and pressurization of thick walled cylinders. Prerequisites: Civ Eng 110, Math 204. (Co-listed with Mech Eng 320)

322 Introduction To Solid Mechanics (LEC 3.0) Review of basic concepts in continuum mechanics. Finite elasticity: some universal solutions for isotropic materials, application of special mechanical models. Linear elasticity: compatibility, stress functions, superposition, special examples such as extension, torsion, bending, and plane problems. Elements of plasticity. Prerequisite: E Mech 311. (Co-listed with Mc Eng 322)

325 Intermediate Heat Transfer (LEC 3.0) Analytical study of conduction; theory of thermal radiation and applications; energy and momentum equations in convective heat transfer and review of empirical relations. Current topics are included. Prerequisite: Mc Eng 225. (Co-listed with Mc Eng 325)

327 Combustion Processes (LEC 3.0) Application of chemical, thermodynamic, and gas dynamic principles to the combustion of solid, liquid, and gaseous fuels. Includes stoichiometry, thermochemistry, reaction mechanism, reaction velocity, temperature levels, and combustion waves. Prerequisite: Mc Eng 221. (Co-listed with Mc Eng 327)

329 Smart Materials And Sensors (LEC 2.0 and LAB 1.0) Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multi-disciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior standing and Math 204. (Co-listed with Mech Eng 329, Elec Eng 329 and Civ Eng 318)

330 Applied Computational Methods (LEC 3.0) Detailed study of computational methods for efficient solution of selected fluids, structures, thermodynamics, and controls problems in aerospace and mechanical engineering. Besides
344 Fatigue Analysis (LEC 3.0) The mechanism of fatigue, fatigue strength of metals, fracture mechanics, influence of stress conditions on fatigue strength, stress concentrations, surface treatment effects, corrosion fatigue and fretting corrosion, fatigue of joints components and structures, design to prevent fatigue. Prerequisite: Civ Eng 110. (Co-listed with Mech Eng 338)

349 Robotic Manipulators & Mechanisms (LEC 2.0 and LAB 1.0) Overview of industrial applications, manipulator systems and geometry. Manipulator kinematics; hand location, velocity and acceleration. Basic formulation of manipulator dynamics and control. Introduction to machine vision. Projects include robot programming, vision-aided inspection and guidance, and system integration. Prerequisites: Cmp Sc 73, Ae Eng 213. (Co-listed with Mc Eng 349)

350 Integrated Product Development (LEC 2.0 and LAB 1.0) Students in design teams will simulate the industrial concurrent engineering development process. Areas covered will be design, manufacturing, assembly, cost, and product support. Using a 3-D solid modeling program, students will design, analyze, and send the data base to the automated machine shop where the parts will be manufactured. The parts will then be assembled, tested and analyzed for their performance. Prerequisites: Ae Eng 251 or Mc Eng 208 for Design; Mc Eng 213 for Assembly; Accompanied or preceded by Mc Eng 353 for Manufacturing; Eng Mg 375 or 385 for Cost/Product Support.

352 Introduction to Finite Element Analysis (LEC 3.0) Variational formualtion of the governing equations. Finite element model, interpolation functions, numerical integration, assembly of elements and solution procedures. Applications to solid mechanics, fluid mechanics and heat transfer problems. Two-dimensional problems. Computer implementation and use of commercial finite element codes. Prerequisite: Mech Eng 208 or Aero Eng 253 or consent of instructor for majors that do not require either of these courses. (Co-listed with Mech Eng 312)

353 Aeroelasticity (LEC 3.0) Study of phenomena involving interactions among inertial, aerodynamic, and elastic forces and the influence of these interactions on aircraft and space vehicle design. Some aeroelastic phenomena are: divergence, control effectiveness, control reversal, flutter, buffeting, dynamic response to rapidly applied loads, aeroelastic effects on load distribution, and static and dynamic stability. Prerequisites: Ae Eng 251 and 271.

360 Probabilistic Engineering Design (LEC 3.0) The course deals with uncertainties in engineering analysis and design at three levels – uncertainty modeling, uncertainty analysis, and design under uncertainty. It covers physics-based reliability analysis and reliability-based design, robustness assessment and robust design, their integration with design simulations, and their engineering applications. Prerequisite: Mech Eng 208 or Aero Eng 261. (Co-listed with Mech Eng 360)

361 Flight Dynamics-Stability And Control (LEC 3.0) Review of static stability, dynamic equations of motion, linearized solutions, classical control design and analysis techniques, introduction to modern control. Prerequisite: Ae Eng 261.

369 Introduction To Hypersonic Flow (LEC 3.0) A study of the basic principles of hypersonic flow. Inviscid and viscous hypersonic flow. Application of
numerical methods. High temperature flow. Consideration of real gas and rarefied flow. Applications in aero-dynamic heating and atmospheric entry. Prerequisite: Ae Eng 271 or Mc Eng or Ae Eng 331.

370 Plasma Physics I (LEC 3.0) Single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory. Diffusion of plasma in electric and magnetic fields. Analysis of laboratory plasmas and magnetic confinement devices. Introduction to plasma kinetic theory. Prerequisite: Aero Eng 231 or Mech Eng 231 or Physics 221 or Nuc Eng 221 or Elec Eng 271. (Co-listed with Mech Eng 370, Nuc Eng 370, Physics 370)

377 Principles Of Engineering Materials (LEC 3.0) Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Ch Eng 347, Physics 377, Mt Eng 377 or Eng 377)

378 Mechatronics (LEC 2.0 and LAB 1.0) This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 279 or equivalent. (Co-listed with Mech Eng 378, Elec Eng 378 and Comp Eng 378)

380 Spacecraft Design I (LEC 3.0) Fundamentals of spacecraft design. Systems engineering, subsystem analysis and design. Gantt charts, organizational charts. Oral presentations and technical documentation. Term project to involve design and development of actual flight hardware, continuing into Spacecraft Design II. Prerequisites: Ae Eng 251, 261, and 271 for Ae Eng majors; consent of instructor for non-Ae Eng majors.

381 Mechanical And Aerospace Control Systems (LEC 3.0) Synthesis of mechanical and aerospace systems to perform specific control functions. Response and stability are studied. Singular value analysis for stability margins is introduced. Prerequisite: Mc Eng 279 or Ae Eng 361. (Co-listed with Mc Eng 381)

382 Spacecraft Design II (LAB 3.0) As a continuation of Ae Eng 380, detailed spacecraft design is performed, leading to procurement of components. As schedules permit, spacecraft fabrication and test commence. Development of labs to facilitate spacecraft test, operation, and data analysis continues. Prerequisites: Aero Eng 380 for AE Eng majors; consent of instructor for non-AE Eng majors.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title. (Co-listed with Mc Eng 401)

410 Seminar (LEC 0.0-1.0) Discussion of current topics. (Co-listed with Mech Eng 410)

413 Advanced Aerospace Mechanics (LEC 3.0) Current problems in aerospace dynamics are treated using methods of analytical mechanics; gyroscopic phenomena; the calculus of variations, stability of systems, to include approximate techniques. Prerequisite: Mc Eng or Ae Eng 307. (Co-listed with Mc Eng 407)

423 Viscous Fluid Flow (LEC 3.0) Fundamentals of viscous fluids for incompressible and compressible flows governed by Navier-Stokes equations; exact, approximate, and numerical solutions for steady and unsteady laminar flows; boundary layer theory for incompressible and compressible flows; stability and transition. Prerequisite: Mech Eng 331, Aero Eng 331, Mech Eng 339, Aero Eng 339 or equivalent. (Co-listed with Mech Eng 423)
126 - Biological Science Courses

425 **Heat Transfer By Conduction** (LEC 3.0) A study of conduction of heat transfer in solids by analytical and other methods. Prerequisite: Mc Eng or Ae Eng 325. (Co-listed with Mc Eng 425)

427 **Heat Transfer By Convection** (LEC 3.0) An analytical study of convective heat transfer in laminar and turbulent flows; forced convection, natural convection, and mixed convection; combined heat and mass transfer; heat transfer with change of phase; instability of laminar flow; current topics in convection. Prerequisite: Mc Eng or Ae Eng 325. (Co-listed with Mc Eng 427)

429 **Heat Transfer By Radiation** (LEC 3.0) A study of the nature of thermal radiation; implications from electromagnetic theory; radiative characteristics of surfaces; enclosures; configuration factors; radiosity; specular and diffuse reflection; transfer in absorbing, emitting and scattering media; combined radiation conduction and convection; experimental methods. Prerequisite: Mc Eng or Ae Eng 325. (Co-listed with Mc Eng 429)

431 **Gas Dynamics I** (LEC 3.0) A critical analysis of the phenomena governing the flow of a compressible fluid; introduction to flow in two and three dimensions; Prandtl-Meyer expansions; small perturbations in subsonic and supersonic flows; method of characteristics. Prerequisite: Mc Eng or Ae Eng 331. (Co-listed with Mc Eng 431)

435 **Turbulent Flows - Theory, Measurements and Modeling** (LEC 3.0) Navier-Stokes equations; statistical description and mean-flow equations; behavior of free shear and wall bounded flows; the energy cascade; turbulence spectra and Kolmogorov hypothesis; measurement techniques: PIV, hot-wires, LDV; turbulence modeling for transport processes and closure schemes for RANS equations; evaluation of model constants, introduction to LES, DNS and hybrid-RANS. Prerequisite: Mech Eng 331 or Aero Eng 331 or Mech Eng 339 or Aero Eng 339 or equivalent. (Co-listed with Mech Eng 435)

437 **Physical Gas Dynamics I** (LEC 3.0) Features of high temperature gas flows including the development of the necessary background from kinetic theory, statistical mechanics, chemical thermodynamics and chemical kinetics. Equilibrium and Nonequilibrium gas properties and gas flows are included. Prerequisite: Mc Eng or Ae Eng 331. (Co-listed with Mc Eng 437)

457 **Markov Decision Processes** (LEC 3.0) Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Comp Eng 457, Mech Eng 447, Eng Mgt 457 and Comp Sci 457)

458 **Adaptive Critic Designs** (LEC 3.0) Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisite: Elec Eng 368 Neural Networks or equivalent (Computational Intelligence Comp Eng 301) (Co-listed with Comp Eng, Elec Eng, Mech Eng and Sys Eng 458)

479 **Analysis And Synthesis Of Mechanical And Aerospace Systems** (LEC 3.0) A unified treatment of modern system theory for the Mechanical and Aerospace Engineering Controls Analyst, including analysis and synthesis of linear and nonlinear systems, compensation and optimization of continuous and discrete systems, and theory of adaptivity. Prerequisite: Mc Eng 381 or Ae Eng 381. (Co-listed with Mc Eng 479)

484 **Analysis Of Lamminated Composite Structures** (LEC 3.0) An overview of isotropic beams, plates, and shells. Bending, vibration, and buckling of laminated composite beams and plates: exact and approximate solutions. Development of composite shell theory and simplified solutions. Analysis of composite structures including transverse shear deformation and thermal effects. Prerequisite: Mech Eng 382 or Aero Eng 311. (Co-listed with Mech Eng 484)

485 **Mechanics Of Composite Materials** (LEC 3.0) Effective moduli of spherical, cylindrical and lamellar systems. Micromechanics of fiber-matrix interfaces and unidirectional composites. Application of shear leg and other approximate theories to interfaces and composites including fiber pull-out, debonding and matrix cracking. Prerequisite: Mech Eng 331 or Aero Eng 331 or Mech Eng 339 or Aero Eng 339 or equivalent. (Co-listed with Mech Eng 485)

486 **Research** (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

490 **Oral Examination** (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 **Continuous Registration** (LEC 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Biological Science Courses

300 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.
301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

310 Seminar (RSD 1.0) Presentation of a scientific paper concerned with current topics in biological sciences. Prerequisite: Senior standing.

311 Bioinformatics (LEC 3.0) The course will familiarize students with the application of computational methods to biology, as viewed from both perspectives. It will introduce problems in molecular, structural, morphological, and biodiversityinformatics, and will discuss principles, algorithms, and software to address them. Prerequisites: Bio Sci 110 or 111 and Comp Sci 53/54 or 74/78. (Co-listed with Comp Sci 311)

315 Developmental Biology (LEC 3.0) Study of the patterns of development of the vertebrate embryo, the molecular mechanisms of tissue induction, and interactions among developing tissues. Prerequisite: Bio Sci 211.

321 Pathogenic Microbiology (LEC 3.0) A study of medically important microorganisms. Students will learn about the properties that enable organisms to cause disease as well as the disease process within the host. Special emphasis will be placed on recent advances in the molecular genetics of host pathogen interaction. Prerequisite: Bio 221 or Cv Eng 261.

325 Microbiology In Bioengineering (LEC 3.0) General introduction to prokaryotic and eukaryotic microorganisms and viruses. Consideration of various parameters affecting the growth, basic techniques of culture, and industrial applications of microorganisms. Prerequisite: Bio 211.

328 Nutritional And Medicinal Properties Of Plants (LEC 3.0) A survey of the biochemical and physiological functions of mineral elements, vitamins, and other organic compounds from plants necessary in human nutrition; and an overview of the medicinal derivatives of various plants, their necessary in human nutrition; and an overview of the medicinal derivatives of various plants, their effects and uses. Prerequisites: Bio Sci 110 or Bio Sci 111; and Bio Sci 211.

331 Molecular Genetics (LEC 3.0) A study of the properties and functions of DNA that make this macromolecule unique in the universe. Examples of replication, transcription, translation, repair, and regulation will be examined in viruses, prokaryotes, and eukaryotes. Prerequisites: Bio Sci 211.

332 Molecular Genetics Laboratory (LAB 2.0) This course provides experience in the use of a variety of DNA manipulation techniques that are common to molecular studies. These include DNA extraction, restriction mapping, Southern blotting, recombinant plasmid construction, DNA sequencing and analysis, and polymerase chain reaction. Prerequisite: Preceded or accompanied by Bio 331.

334 Genomics (LEC 3.0) This course offers a general overview of the field of genomics. Topics covered include genome sequencing and annotation, transcriptomics, proteomics, metabolomics, genomic variation, and an overview of human, and several animal, plant, and microbial genome projects.

335 Cancer Cell Biology (LEC 3.0) Advanced biology course examining cellular processes that go awry during tumorigenesis. We will discuss cell cycle controls, signal transduction pathways, DNA repair, telomerase, apoptosis, cell migration and adhesion that are altered in cancer cells. Prerequisite: Bio Sci 211.

340 Biomaterials I (LEC 3.0) This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Cer Eng 340, Met Eng 340, Chem Eng 340)

341 Tissue Engineering I (LEC 3.0) The course will introduce senior undergraduate students to the principles and clinical applications of tissue engineering including the use of biomaterials scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. Prerequisite: Senior standing. (Co-listed with MS&E 341)

345 Comparative Chordate Anatomy (LEC 2.0 and LAB 2.0) An integrated, comparative study of chordate structures and systems, with emphasis on evolution, development and function. Includes examination of gross anatomy and histology of selected forms. Prerequisites: Bio Sci 113, Bio Sci 114.

351 Introduction to Environmental Microbiology (LEC 3.0) Environmental Microbiology is an interdisciplinary study of how microorganisms can impact humans and applied to solve problems such as water treatment and environmental cleanup of contaminants. This course differs from Bio Sci 451 as no NSF-style report or presentation is required. Prerequisite: Bio Sci 221.

352 Biological Effects Of Radiation (LEC 3.0) Introduction to biological effects of ionizing radiation including mode of induction of mutations, effects on the developing fetus and specific tissues plus therapeutic applications of various types of radiation. Prerequisites: Bio Sci 110 or Bio Sci 111; and Chem 3.

354 Freshwater Ecology (LEC 3.0) The ecology of streams, lakes, and wetlands. The course will cover the physical and chemical characteristics of freshwater environments, the diversity of life in freshwaters, biogeochemical processes, and threats to freshwater systems. Prerequisite: Bio Sci 251.

358 Advanced Biodiversity (LEC 3.0) This course focuses on the enhancement and reduction of biodiversity and modern techniques of measuring and monitoring it. Topics include biogeography,
community structure, competition, predation, food webs, geology-biology relationships, environmental change, and human impact. Additional costs and a week-long field trip are required. Prerequisite: Bio Sci 235 or Bio Sci 251.

364 Global Ecology (LEC 3.0) This class covers ecological topics at large scales, emphasizing global scales. Topics include global energy balance, biogeochemical cycles of water, carbon, nitrogen, and other biologically important elements, and global biodiversity. Prerequisite: Bio Sci 251.

370 Toxicology (LEC 3.0) A study of natural and man-made toxics, various possible routes of exposure, absorption, distribution, biotransformation, specific target sites, and mechanisms involved in elicitation of toxic effects, as well as detoxification and excretion. Prerequisites: Bio Sci 211, Bio Sci 231, Junior standing.

375 Biological Design and Innovation I (LAB 3.0) Students identify significant problems in biological/biomedical sciences, and then design and implement innovative solutions using advanced techniques. Students present and defend proposals and results. Prerequisite: At least two 200 level or higher Biology courses.

381 Immunology (LEC 3.0) A study of the principles of immunology, including biological and biochemical aspects of the immune response, immunohistochemistry, serology, immunoglobinulin and T-cell mediated allergies, tumor and transplantation immunology, autoimmune diseases, and the role of immunity in host defense. Prerequisites: Chem 223 or Chem 363 and Bio 211.

382 Neurobiology (LEC 3.0) An intermediate course in cellular neurobiology. Emphasis will be placed on the unique properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of neurons, synaptic transmission, neurochemistry, signal transduction, neuropsychopharmacology and neurodevelopment. Prerequisite: Bio Sci 211.

383 Pharmacology (LEC 3.0) The basic principles of drug action, pharmacokinetics, pharmacodynamics and toxicity. We will emphasize the actions of drugs used to treat cardiovascular and nervous system disorders. Students will review the primary literature to prepare both written and oral reports on drug actions. Prerequisite: Bio Sci 211.

388 Biomedical Problems (LEC 3.0) This course will use a problem-based learning approach to examine biological aspects of various medical conditions. Students will work in groups and individually to answer problems related to diagnostic testing and evaluation of diseases and other medical conditions. Prerequisites: Bio Sci 211 and 221, Bio Sci 242 recommended.

390 Undergraduate Research (IND 1.0-3.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours for graduation credit. Subject and credit to be arranged with the instructor. Prerequisite: Consent of instructor.

391 General Virology (LEC 3.0) An overview of the field of virology, including plant, animal, and bacterial viruses. Discussions will include morphology, classification, virus-host interactions, genetics, clinical and industrial aspects of viruses, and viruses as model systems for basic biological studies. Prerequisites: Bio Sci 110 or 111; Bio Sci 211, 221, Chem 1, 3, 221.

400 Special Problems (IND 0.0-6.0) Graduate problems or readings on specific subjects or projects in the department. Prerequisite: Consent of the instructor.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

402 Problems In Applied And Environmental Biology (LEC 0.0-3.0) Overview of major areas of research in applied biology and environmental science with a focus on interdisciplinary approaches used on S&T campus in ongoing research. Prerequisite: Acceptance to Graduate Program.

410 Graduate Seminar (RSD 0.0-6.0) Presentation and discussion of current topics in Applied and Environmental Biology.

418 Plant Stress Physiology (LEC 3.0) Course covers plant responses to environmental stress. Physiological anatomical, biochemical and molecular responses to both biotic and abiotic stresses. Prerequisites: Bio 211, Bio 218 and 219 and Chem 361.

421 Advanced Microbial Metabolism (LEC 3.0) A survey of the diverse metabolic properties of microorganisms. Course material will emphasize major metabolic pathways and how they relate to microbial diversity and microbial ecology. Prerequisite: Bio 221 or an equivalent course.

422 Biomolecules (LEC 3.0) Demonstration of the principles of modern biochemistry as they relate to the structure and function of the major macromolecules of the cell. An emphasis will be placed on reading and interpreting scientific literature and scientific writing. Prerequisites: Bio 211 and/or Chem 361 or an equivalent course.

435 Advanced Cancer Cell Biology (LEC 3.0) Graduate level biology course examining cellular processes that go awry during tumorigenesis. We will discuss cell cycle controls, signal transduction pathways, DNA repair, telomerase, apoptosis, cell migration and adhesion that are altered in cancer cells. In addition to lecture, we will include a weekly section to examine primary cancer literature. Prerequisite: Bio Sci 211.

440 Biomaterials II (LEC 3.0) This course will introduce graduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. A term paper and oral presentation are required. Prerequisite: Graduate Standing. (Co-listed with Cer Eng 440, Met Eng 440, Chem Eng 440)
441 Tissue Engineering II (LEC 3.0) The course will introduce graduate students to the principles and clinical applications of tissue engineering including the use of biomaterials, scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. A related topic term paper and oral presentation are expected. Prerequisite: Graduate standing. (Co-listed with MS&E 441)

442 Mammalian Physiology (LEC 3.0) Advanced study of the physiology of mammalian organ systems with a focus on membrane biophysics, endocrine control of metabolism, organ interactions, and homeostatic mechanisms. Prerequisites: Bio 211 plus either Bio 215 or Bio 242.

451 Environmental Microbiology (LEC 3.0) Topics to be explored in this course will include but are not limited to microbial growth and metabolic kinetics, life in extreme conditions, biogeochemical cycling, bioremediation of contaminants, waterborne pathogens and environmental biotechnology. Prerequisite: Must be a graduate student.

452 Astrobiology (LEC 3.0) The origins of life on early earth and the possibility of life on extraterrestrial bodies will be explored in this course through lectures and journal article discussions. In addition, the means to study extraterrestrial environments will be considered. Prerequisite: Graduate standing.

454 Advanced Freshwater Ecology (LEC 3.0) The ecology of streams, lakes, and wetlands. The course will cover the physical and chemical characteristics of freshwater environments, the diversity of life in freshwaters, biogeochemical processes, and threats to freshwater systems. Research proposal and additional readings required for graduate credit. Prerequisite: Graduate standing.

455 Bioremediation (LEC 3.0) During this course, the use of microorganisms and other living organisms for the remediation of contaminated environments will be explored along with the techniques necessary for monitoring their activities. Prerequisite: Graduate standing.

461 Advanced Cell Biology (LEC 3.0) Advanced study of the biology of eukaryotic cells, including biomembranes and membrane transport, subcellular organelles, cellular energetics, protein sorting, cytoskeletal elements, cell to cell signalling, regulation of the cell cycle, and tissue organization. Prerequisite: Bio 211 or equivalent.

470 Advanced Toxicology (LEC 3.0) We will discuss the toxicity and mechanisms of action of natural and man-made toxicants. The impact of toxicants on both human health and the environment will be considered. Students will be assigned to independent literature search and write a report. Prerequisites: Bio Sci 211 and Bio Sci 231.

475 Techniques In Applied And Environmental Biology (LEC 3.0) Students will have the opportunity for hands on experience with the various techniques used in the modern biology laboratory. Techniques will include gene cloning, DNA sequencing, protein purification, growth and development of various model organisms, data acquisition. Prerequisite: Graduate standing.

490 Graduate Research (IND 0.0-15.0) Investigation of an advanced nature leading to the preparation of a thesis or dissertation.

493 Oral Examination (IND 0.0) (Variable) After completion of all other program requirements, oral examinations for on-campus M.S./PH.D students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

Business Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This is designed to give the department an opportunity to test a new course. Variable title.

305 Accounting Essentials (LEC 1.5) This course is an introduction to the essentials of financial and managerial accounting for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Prerequisite: Senior or Junior standing; 3.0 GPA required.

306 Management and Business Law Essentials (LEC 1.5) This course is an introduction to the essentials of management and business law for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Prerequisite: Senior or Junior Standing; 3.0 GPA required.

308 Operations Management Essentials (LEC 1.5) This course is an introduction to the essentials of operations management for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Prerequisite: Senior or Junior Standing; 3.0 GPA required.
130 - Business Courses

309 Mathematics and Statistics Essentials (LEC 1.5) This course is an introduction to the essentials of mathematics and statistics for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Prerequisite: Senior or Junior Standing; 3.0 GPA required.

311 Business Negotiations (LEC 3.0) The purpose of this course is to understand the practices and processes of negotiation so that you can negotiate successfully in a variety of settings. The course is designed to be relevant to the broad spectrum of negotiation problems faced by managers, consultants, etc. Because almost everyone negotiates all the time, this course is relevant to almost any student. Prerequisite: Upperclassmen or graduate status.

312 Management Information Systems Essentials (LEC 1.5) This course is an introduction to the essentials of management information systems for running a business. It is designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Prerequisite: Senior or Junior Standing; 3.0 GPA required.

315 Introduction to Teambuilding and Leadership (LEC 3.0) This course covers an introduction to leadership styles, principles, models, issues, and applications through analytical and intellectual examination. Key components of teams are introduced, with opportunities to practice and develop both leadership and teambuilding skills.

320 Managerial Accounting (LEC 3.0) Emphasizes internal use of accounting information in establishing plans and objectives, controlling operations, and making decisions involved with management of an enterprise (the determination of costs relevant to a specific purpose such as inventory valuation, control of current operation, or special decisions). Prerequisites: Bus 120 or Eng Mgt 147.

330 Foundations of Sustainable Business (LEC 3.0) An introduction to sustainability, this course examines the concept of environmental issues in a business context. Principles, processes, and practices of sustainable business will be explored through a wide range of case studies. Prerequisite: Junior, Senior, or Graduate standing.

340 Introduction to Business Innovation for Sustainability (LEC 3.0) Applies an entrepreneurial mindset to the environmental and social opportunities and challenges facing the global community. Topics are examined from multiple perspectives: nonprofit, hybrid, and for-profit organizations. Credit cannot be earned for both Bus 340 and Bus 440. Prerequisite: Bus 330 or equivalent.

350 Customer Focus and Satisfaction (LEC 3.0) Major emphasis is given to the concept of customer focus, with coverage of techniques for obtaining customer needs, measuring customer satisfaction, developing products and services to satisfy customers, and maximizing the benefits of customer feedback. A semester long HoQ project will be done. Prerequisite: MKT 310 or MKT 307 or Eng Mgt 251. (Co-listed with MKT 350)

360 Business Operations (LEC 3.0) This course examines the concepts, processes, and institutions that are fundamental to an understanding of business operations within organizations. Emphasis is on the management and organization of manufacturing and service operations and the application of quantitative methods to the solution of strategic, tactical and operational problems. Prerequisites: Math 8 or Math 12 or Math 14; any Statistics course; Bus 120 or Eng Mgt 147.

370 Human Resource Management (LEC 3.0) The course examines employee selection, performance appraisal, training and development, compensation, legal issues, and labor relations. Prerequisite: Bus 110.

375 International Business (LEC 3.0) This survey course will deal with business concepts, analytical processes and philosophical bases for international business operations. Emphasis is on environmental dynamics, multinational business organizations, cultural and economic constraints, unique international business practices and international operations, strategy and policy. Prerequisite: MKT 311 or MKT 407 or Eng Mgt 251.

380 Strategic Management (LEC 3.0) Study of the formulation and implementation of corporate, business and functional strategies designed to achieve organizational objectives. Case studies and research reports may be used extensively. Prerequisites: MKT 311 or Eng Mgt 251; Finance 250 or Eng Mgt 252; Senior standing.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be with the instructor.

397 Senior Business Design I (LEC 1.0) In this course, students will become familiar with the principles of entrepreneurship; learn about the basic purpose, content and structure of business plans; and develop business presentation skills through practice. At the end of the semester, student teams will give presentations to a bank in an attempt to secure a loan to run the business the following semester. Prerequisite: Senior Standing.

398 Senior Business Design II (LEC 2.0) In this course, students will be expected to carry out the business plans created in Bus 397. Progress reports are submitted roughly every 3 weeks during the semester. At the end of the semester, students terminate the business organization and profits are donated to a non-profit organization in the team's name. Prerequisite: Bus 397.
400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Prerequisite: Admission to the MBA program.

401 Special Topics (Variable 0.0-6.0) This is designed to give the department an opportunity to test a new course. Variable title.

405 Graduate Accounting Essentials (LEC 1.5) This course is an introduction to the essentials of financial and managerial accounting for running a business. It's designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit cannot be applied to any major or minor in Business, IST, or Economics. Additional case or report required. Prerequisite: Bachelor Degree.

406 Graduate Management and Business Law Essentials (LEC 1.5) This course is an introduction to the essentials of management and business law for running a business. It's designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit cannot be applied to any major or minor in Business, IST, or Economics. Additional case study or report required. Prerequisite: Bachelor Degree.

408 Graduate Operations Management Essentials (LEC 1.5) This course is an introduction to the essentials of operations management for running a business. It's designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit cannot be applied to any major or minor in Business, IST, or Economics. Additional case study or report required. Prerequisite: Bachelor Degree.

409 Graduate Mathematics and Statistics Essentials (LEC 1.5) This course is an introduction to the essentials of mathematics and statistics for running a business. It's designed for students planning to enter the MBA program who need this area and for non-business students who want some business background. Credit cannot be applied to any major or minor in Business, IST, or Economics. Additional case study or report required. Prerequisite: Bachelor Degree.

412 Graduate Management Information Systems Essentials (LEC 1.5) This course is an introduction to the essentials of management information systems for running a business. It's designed for students planning to enter the MBA program. Credit in this course cannot be applied to any major or minor in Business, IST, or Economics. Additional case or report required. Prerequisite: Bachelor Degree.

415 Teambuilding and Leadership in Business Settings (LEC 3.0) This course covers leadership styles, principles, models, issues, and applications through analytical and intellectual examination. Key components of teams are introduced, with opportunities to practice and develop both leadership and teambuilding skills. Case studies required.

421 Teambuilding and Leadership (LEC 3.0) This class will teach students how to work well in teams and lead teams and organizations. Management, networking, presentation skills, and sustainable business practices will be covered. Prerequisite: Admission into the MBA or the Management of Sustainable Business Graduate Certificate program.

422 International Marketing (LEC 3.0) This course focuses on the challenges faced by business managers as they deal with a competitive global market. The course will examine various topics related to international marketing such as cultural differences, economic differences, differences in product and technical standards, global advertising, and international pricing and segmentation. Prerequisite: MKT 307/407 or equivalent.

423 Management Information Systems and Databases (LEC 3.0) This course covers the use of management information systems and databases as used by business managers as they deal with a competitive global market. Prerequisite: Bus 312/412 or equivalent.

424 Managerial Accounting for Monitoring and Control (LEC 3.0) This course covers managerial accounting and its critical role in decision making, monitoring, and controlling business processes. Prerequisite: Bus 305/405 or equivalent.

425 Operations and Project Management (LEC 3.0) This course covers operations management and its critical role in developing and maintaining effective and efficient processes in the organization. The use of project management tools is covered for purposes of effectively managing organizational change. Prerequisite: Bus 308/408 or equivalent.

426 Integration of Business Areas (LEC 3.0) Students will work on projects and simulations to learn to integrate the business functions to maximize performance efficiency and effectiveness. The consulting field will be covered through projects and readings. Prerequisite: Student must have completed at least 12 hours towards the MBA degree.

427 Managerial Finance (LEC 3.0) This course covers the use of financial tools to manage the organization. The main focus is the strategic decision-making process of modern managers responsible for major financial decisions. Topics include financial policy, capital investment analysis, dividend policy, capital structure, and other contemporary corporate finance issues. Prerequisite: Finance 305/405 or equivalent.

440 Business Innovation for Sustainability (LEC 3.0) Applies an entrepreneurial mindset to the environmental and social opportunities and challenges facing the global community. Topics are examined from multiple perspectives: nonprofit, hybrid, and for-profit organizations. Written case studies required. Credit cannot be earned for both Bus 340 and 440. Prerequisite: Bus 330.

450 Advanced Customer Focus and Satisfaction (LEC 3.0) Major emphasis is given to the concept of customer focus, with coverage of techniques for obtaining customer needs, measuring customer
satisfaction, developing products and services to satisfy customers, and maximizing the benefits of customer feedback. Individual focused research is included. Prerequisite: MKT 311 or MKT 307 or Eng Mgt 251. (Co-listed with MKT 450)

471 Advanced Business Negotiations (LEC 3.0) The purpose of this course is to understand the practices and processes of negotiation so that you can negotiate successfully in a variety of settings. The course is designed to be relevant to the broad spectrum of negotiation problems faced by managers, consultants, etc. A negotiation project is also required. Prerequisite: Graduate status.

475 Advanced International Business (LEC 3.0) Business concepts, analytical processes and philosophical bases for international business operations. Emphasis is on environmental dynamics, multinational business organizations, cultural and economic constraints, unique international business practices and international operations, strategy and policy. Research project required. Prerequisite: MKT 311 or MKT 407 or Eng Mgt 251.

490 Research (IND 0.0-9.0) Research investigation of an advanced nature leading to a major report suitable for publication in a journal or in a conference proceedings. Prerequisite: Permission of the instructor.

491 Internship (IND 0.0-6.0) Students apply critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employer. Activities will vary depending on the student's background and the setting. Requires major report and formal presentation to sponsoring organization. Prerequisite: Bus 420.

493 Oral Examination (IND 0.0) After completion of all other requirements, oral examinations for on-campus M.B.A./Ph.D. students may be processed during intersession. Off-campus M.B.A. students must be enrolled in oral examination and must have paid an oral examination fee at the time defense/oral examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

496 Project Research (IND 0.0-9.0) The research project will involve students applying research techniques and discipline specific knowledge working on a project designed by the advisor, often working with a business organization. Requires major report and formal presentation to sponsoring organization. Prerequisite: Permission of the instructor.

499 Practicum (IND 0.0-6.0) This course is similar to the BUS 491 Internship course. The difference is that this course is intended for students who are already employed by an organization for whom they wish to continue working. Prerequisite: Business Core.

Ceramic Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

306 Mechanical Properties Of Ceramics (LEC 3.0 and LAB 1.0) This course will treat the theory and testing practice related to design based on the mechanical properties of ceramics. The course also includes a laboratory consisting of experiments for the characterization of the mechanical properties of ceramics. Prerequisite: Civ Eng 110.

308 Electrical Ceramics (LEC 2.0 and LAB 1.0) The application and design of ceramics for the electrical industry is discussed. Particular emphasis is placed on how ceramic materials are altered to meet the needs of a specific application. The laboratory acquaints the student with measurements which are used for electrical property evaluation. Prerequisite: Cr Eng 284.

315 Organic Additives In Ceramic Processing (LEC 2.0) Basic chemistry, structure and properties or organic additives used in the ceramics industry; solvents, binders, plasticizers, dispersants. Use of organic additives in ceramic processing. Prerequisites: Cr Eng 203 and 231.

331 Ceramic Processing (LEC 3.0) Powder, colloidal and sol-gel processing, forming methods, drying, sintering and grain growth. Relation of processing steps to densification and microstructure development. Prerequisite: Senior standing.

333 Microelectronic Ceramic Processing (LEC 3.0) Materials, processing and design of microelectronic ceramics are covered. Introduction to devices, triaxial ceramics, high aluminas, tape fabrication, metallizations, thick film processing and glass-to-metal seals. Prerequisites: Cr Eng 203 & 242.

338 Thermal Properties Of Ceramics (LEC 3.0) This course will teach the crystal physics underlying heat capacity, internal energy, phonon and photon conduction, and thermal expansion. These properties will be used to rationalize the behavior of a wide variety of ceramic materials in severe thermal environments. Prerequisite: Senior Standing.

340 Biomaterials I (LEC 3.0) This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Bio Sci 340, Met Eng 340, Chem Eng 340)

352 International Engineering and Design (LEC 3.0) A multi-disciplinary engineering course focused on sustainable design and technology transfer to developing countries. Course includes elements of traditional capstone design classes. Experiential
learning through competitions and/or field work is a major component of the class. Prerequisite: Senior standing, instructor approval. (Co-listed with Geo Eng 352 and Met Eng 352)

362 **Thermomechanical/Electrical/Optical Properties Lab** (LAB 1.0) Laboratory consisting of three separate modules of experiments for the characterization of the thermomechanical, electrical and optical properties of ceramics. The student will choose one of the three modules. Prerequisite: Civ Eng 110 or Cer Eng 284.

364 **Refractories** (LEC 3.0) The manufacture, properties, uses, performance, and testing of basic, neutral and acid refractories.

369 **Glass Science And Engineering** (LEC 3.0) The development, manufacturing methods, applications, and properties of flat, fiber, container, chemical, and special purpose glasses. Composition/property relationships for glasses and nucleation-crystallization processes for glass-ceramics are also covered. Prerequisite: Cr Eng 284.

371 **Dielectric And Electrical Properties Of Oxides** (LEC 3.0) The processes occurring in inorganic materials under the influence of an electric field are considered from basic principles. Emphasis is placed on application to real systems. Prerequisite: Cr Eng 284.

377 **Principles Of Engineering Materials** (LEC 3.0) Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Ae Eng 377, Ch Eng 347, Physics 377, Mt Eng 377)

390 **Undergraduate Research** (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

392 **X-Ray Diffraction Analysis** (LEC 2.0 and LAB 1.0) Theory and practical aspects of x-ray diffraction analysis are covered including diffraction theory, qualitative and quantitative analysis techniques, electronic databases, and operation of modern powder diffractometers. Students cannot receive credit for both Cer Eng 292 and Cer Eng 392. Prerequisite: Preceded or accompanied by Cer Eng 291.

400 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 **Special Topics** (Variable 0.0-6.0) his course is designed to give the department an opportunity to test a new course. Variable title.

405 **Interfacial Phenomena** (LEC 3.0) The nature and constitution of inorganic interfaces, surface processes and consequences, epitaxy, thermal grooving, UHV techniques, field emission-ionization and evaporation, surface models, adsorption and nucleation.

416 **Composite Materials** (LEC 3.0) The objective of this course is to give the students an understanding of the processing, design, and mechanical behavior of composite materials. The course will treat both fiber reinforced and laminate-based composites with an emphasis on the macromechanical behavior of these composites with respect to their architecture. Prerequisite: Graduate Standing.

418 **Optical Properties Of Materials** (LEC 3.0) The objective of this course is to give the student a fundamental understanding of the structure–optical property relationships exhibited by isotropic and anisotropic materials. Topics will include the wave/particle nature of light, how light interacts with materials, color, and applications such as lasers, fiber optic communication systems, electro-optics, and integrated optics. Prerequisites: Physics 24 or 25 and Math 22.

423 **Sintering And Microstructure Development** (LEC 3.0) Theory and practice of densification, microstructure evolution, effect of processing and material factors, grain boundary migration, grain growth. Prerequisite: Graduate standing.

440 **Biomaterials II** (LEC 3.0) This course will introduce graduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. A term paper and oral presentation are required. Prerequisite: Graduate Standing. (Co-listed with Bio Sci 440, Met Eng 440, Chem Eng 440)

450 **Advanced Topics On The Vitreous State** (LEC 3.0) Modern aspects of the structure and dynamics of inorganic vitreous materials will be reviewed and applied towards understanding the macroscopic properties of glasses. Prerequisite: Graduate standing.

458 **Electroceramic Composite** (LEC 3.0) The objective of this course is to give the student an understanding of the structure—property relationships exhibited by electroceramic composites. The composites of interest cover a wide range of electrical phenomena including composite dielectrics, piezoelectrics, conductors, magnets, and optics. Prerequisite: Cr Eng 284.

460 **Crystal Anisotropy** (LEC 3.0) The objective of this course is to give the student an understanding of crystal structure-physical property relationships. The relationship between symmetry and tensor representation will be examined, and then related to the mechanical, electrical and optical properties exhibited by the materials. Prerequisite: Cr Eng 102.

490 **Research** (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

491 **Internship** (IND 0.0-15.0) Students working toward a doctor of engineering degree will select with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected
and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Chemistry Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Prerequisite: Preceded or accompanied by Chem 4 or an equivalent training program approved by S&T. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

310 Undergraduate Seminar (RSD 1.0) Written and oral presentations of current topics in chemistry. This course may serve as part of the capstone requirement for chemistry majors.

321 Intermediate Organic Chemistry I (LEC 3.0) An advanced course designed to give the student a mastery of the fundamentals of organic chemical reactions and theory. Prerequisite: Chem 223.

323 Intermediate Organic Chemistry II (LEC 3.0) A systematic study of organic reactions, their mechanisms and synthetic applications. Prerequisite: Chem 223.

325 Industrial Chemical Processes (LEC 3.0) Detailed study of various industrial chemical manufacturing processes including underlying chemistry, reaction pathways and separation processes. Prerequisite: Ch Eng 235 or Chem 221, or graduate standing. (Co-listed with Ch Eng 389)

331 Selected Topics In Inorganic Chemistry (LEC 3.0) A study of inorganic chemistry with emphasis on physical methods. General subjects covered include: molecular structure, bonding, complexes, spectroscopy, and reaction rates.

343 Introduction To Quantum Chemistry (LEC 3.0) A study of molecular structures and spectroscopy, statistical thermodynamics, kinetic theory, chemical kinetics, crystals, and liquids. Prerequisites: Math 22, Physics 24 or Physics 25.

344 Advanced Physical Chemistry (LEC 3.0) Advanced undergraduate treatments of special topics of physical chemistry, which may include statistical mechanics, kinetics, group theory, or spectroscopy. Prerequisite: Chem 343.

346 Chemical Thermodynamics (LEC 3.0) A study of the laws of thermodynamics with application to chemical systems. Emphasis is placed on partial molal functions. Prerequisite: Chem 243.

355 Instrumental Methods Of Chemical Analysis (LEC 3.0 and LAB 1.0) Principles and analytical applications of molecular spectroscopy, chromatographic separations, mass spectrometry, and radiochemistry. A brief overview of instrument electronics, signal generation and processing, and automated analysis is also provided. Prerequisites: Chem 4, Chem 151, Chem 223, Chem 243.

361 General Biochemistry (LEC 3.0) A resume of the important aspects of quantitative and physical chemistry in biochemical processes. General subjects covered include: proteins, nucleic acids, enzymes, carbohydrates and lipids. Prerequisite: Chem 223.

362 General Biochemistry Laboratory (LAB 2.0) Experiments are integrated with the lectures and cover the chemical and physical properties of proteins, enzymes, nucleic acids, carbohydrates and lipids. Prerequisites: Preceded or accompanied by Chem 361 and Chem 4 or an equivalent training program approved by S&T.

367 Industrial Biochemistry (LEC 3.0) A study of the problems involved in the utilization of biological systems for the production of bulk chemicals, the preparation of biologicals and the treatment of waste from plants producing biologicals and foodstuffs. Prerequisite: Junior standing.

375 Principles Of Environmental Monitoring (LEC 3.0) This course provides an overview of environmental monitoring methodologies. Discussion covers thermodynamic and kinetic processes that affect chemical transport and fate in the environment. Federal environmental regulations and remediation technologies are also covered with specific examples. Prerequisites: Chem 221, Physics 25.

381 Chemistry And Inherent Properties Of Polymers (LEC 3.0) A basic study of the organic chemistry of natural and synthetic high polymers, their inherent properties and their uses in plastic, fiber, rubber, resin, food, paper and soap industries. Prerequisite: Chem 223.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>384</td>
<td>Polymer Science Laboratory (LEC 1.0 and LAB 2.0) Lectures and laboratory experiments dealing with polymerization reactions, solution properties and bulk or solid properties will be presented. Each student will prepare polymers and carry out all characterization experiments on actual samples. Prerequisite: Chem 381 or Ch Eng 375, preceded or accompanied by Chem 4 or an equivalent training program approved by S&T.</td>
</tr>
<tr>
<td>385</td>
<td>Fundamentals Of Protective Coating I (LEC 3.0) Study of the basic principles of protective coatings with particular reference to the paint and varnish industry. Classifications, manufacture, properties and uses of protective coatings. Prerequisite: Chem 223.</td>
</tr>
<tr>
<td>390</td>
<td>Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Does not lead to the preparation of a thesis. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor. Preparation of a written, detailed report is required of the student. Prerequisite: Must meet departmental requirements for instruction in laboratory safety. Consent of instructor required.</td>
</tr>
<tr>
<td>400</td>
<td>Special Problems (IND 0.0-6.0) Problems or reading on specific subjects or projects in the department. Consent of instructor required.</td>
</tr>
<tr>
<td>401</td>
<td>Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.</td>
</tr>
<tr>
<td>410</td>
<td>Seminar (RSD 1.0) Discussion of current topics.</td>
</tr>
<tr>
<td>411</td>
<td>Introduction to Chemistry Research (LEC 1.0) An introduction to chemical research topics of interest to the department presented by different faculty members. Special emphasis will also be placed on a discussion of ethics, plagiarism, codes of conduct, research notebooks, publishing, and presentations. Prerequisite: Graduate Student Status.</td>
</tr>
<tr>
<td>423</td>
<td>Advanced Synthetic Organic Chemistry (LEC 3.0) A discussion of a large number of synthetically useful reactions involving enolates and enamines; nucleophilic additions to carbonyl compounds; functional group interconversions, thermal pericyclic reactions; organometallic compounds; carbocations, carbenes and free radicals as reactive intermediates; aromatic substitutions; and multistep synthesis. Prerequisite: Chem 321 or Chem 323.</td>
</tr>
<tr>
<td>425</td>
<td>Physical Organic Chemistry (LEC 3.0) An advanced course in theoretical organic chemistry treating molecular orbital theory, free energy relationships, transition state theory, and other fundamental topics. Prerequisite: Chem 321.</td>
</tr>
<tr>
<td>428</td>
<td>Spectrometric Identification of Organic Compounds (LEC 3.0) Overview of MS and IR techniques in the characterization of organic compounds; CD/ORD; 1H, 13C, and heteronuclear NMR spectroscopy in the structural analysis; applications of APT, DEPT, 1H-1H COSY, HETCOR, HMQC, HMBC, INADEQUATE, TOCSY, NOE AND NOESY, and dynamic NMR. Prerequisite: Chem 223.</td>
</tr>
<tr>
<td>432</td>
<td>Bioinorganic Chemistry (LEC 3.0) Metallobiomolecules, including metalloenzymes and other metalloproteins; oxygen carriers; iron transport and other iron proteins; copper proteins; cancer agents and cures; nitrogen-fixation, etc. Prerequisite: Chem 331.</td>
</tr>
<tr>
<td>433</td>
<td>Nanomaterials Synthesis, Properties and Applications (LEC 3.0) Chemistry of nanomaterials. Understanding the fundamentals of nanoscience and technology. Studying the different synthesis strategies for nanomaterials and their characterization. Understanding the properties of nanomaterials and their possible applications. Introducing the concept for device fabrication. Prerequisite: Chem 331.</td>
</tr>
<tr>
<td>436</td>
<td>X-ray Crystallography (LEC 2.0 and LAB 2.0) Molecular and crystal structure determination by single crystal x-ray diffraction methods. Brief coverage of relation to neutron and electron diffraction.</td>
</tr>
<tr>
<td>444</td>
<td>Spectroscopy (LEC 3.0) Introduction to the interaction of electromagnetic radiation with matter. Emphasis on the ultraviolet, visible, and radio portions of the spectrum. Prerequisite: Chem 343 or equivalent.</td>
</tr>
<tr>
<td>445</td>
<td>Quantum Chemistry I (LEC 3.0) A rigorous introduction to the fundamental concepts and principles of quantum chemistry. Application to translational, vibrational, and rotational motion; one-electron systems. Prerequisite: Chem 343 or equivalent.</td>
</tr>
<tr>
<td>446</td>
<td>Quantum Chemistry II (LEC 3.0) Atomic and molecular quantum mechanics. Emphasis on selfconsistent field, variational, and perturbation theories. Introduction to approximate methods. Prerequisite: Chem 343 or equivalent.</td>
</tr>
<tr>
<td>449</td>
<td>Chemical Kinetics (LEC 3.0) An introduction to the deduction of mechanisms of homogeneous chemical reactions from rate-data. Selected topics, such as photochemistry, free-radical mechanisms, catalysis, and explosion reactions. Prerequisite: Chem 243.</td>
</tr>
</tbody>
</table>
453 Separations (LEC 3.0) An in-depth study of all types of analytical and preparativescale separations. A special emphasis will be placed on chromatography and chromatographic theory. Prerequisite: Chem 355 or equivalent.

455 Chemical Spectroscopy (LEC 3.0) A study of the electronic, vibrational, rotational and nuclear magnetic resonance spectra of atoms and molecules. A basic understanding of the underlying theoretical principles and the interpretations of results is stressed. Prerequisite: Chem 355, Chem 343 or equivalent courses.

457 Electrochemistry (LEC 3.0) Introduction to the fundamentals, methods and applications of electrochemistry. Fundamentals cover the thermodynamics/kinetics of electrode reactions, and the modes of mass transport in the electrolyte. Methods cover potentiometric, amperometric, and a.c. techniques. Applications focus on analysis and study of materials. Prerequisite: Chem 243.

458 Principles And Applications Of Mass Spectrometry (LEC 3.0) The course covers fundamental physical principles of mass spectrometry, instrumentation, interpretation of spectra, and applications in environmental, polymer, biomedical, and forensic fields. Prerequisite: Chem 355 or equivalent.

459 Mass Spectrometry of Macromolecules (LEC 3.0) This course will provide an overview of mass spectrometric applications in biomacromolecules and synthetic polymers; particular areas of emphasis are proteomics, genomics, pharmaceutical screening, characterization of biochemical complexes and synthetic polymers. Prerequisite: Chem 355 or equivalent.

464 Free Radicals In Biochemistry (LEC 3.0) The study of the basic principles of free radical chemistry and biochemistry. Prerequisites: Chem 221, Chem 223 and Bio Sci 211.

467 Intermediary Metabolism And Biosynthesis (LEC 3.0) The course covers the biosynthesis and metabolism of nucleic acids, carbohydrates, lipids and proteins. Prerequisite: Chem 363.

471 Advanced Nuclear Chemistry (LEC 3.0) A study of the production and decay of nuclei, radioactive dating techniques, and the abundance and origin of the chemical elements. Prerequisites: Chem 371, Physics 107 or 207.

483 Polymer Synthesis (LEC 3.0) The methods of organic monomer and polymer syntheses will be explored. Mechanistic and structural components, modern and current industrial methods for polymer syntheses will be discussed. Topics include linear, branched, graft, and dendritic polymers, nano-technology and macromers. Prerequisites: Chem 381; Chem 321 or Chem 323.

484 Polymer Physical Chemistry And Analysis (LEC 3.0) A study of the physical properties of macromolecular systems including polymer solutions, gels, bulk polymers and rubbers. The chemical characterization of polymers based on their thermal, spectroscopic, microstructure and molecular weight is also discussed. Prerequisites: Chem 223 and Chem 243.

486 Inorganic Polymers (LEC 3.0) A basic study of inorganic natural and synthetic polymers, their formation and reactivity, their inherent properties, methods of characterization and applications. Prerequisite: Chem 237 or equivalent.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisite: Must meet departmental requirements for instruction in laboratory safety. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Chemical Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

320 Chemical Process Flowsheeting (LEC 2.0 and LAB 1.0) The development, implementation, and evaluation of methods for determining the mathematical model of a chemical process, ordering the equations in the mathematical model, and solving the model. Prerequisite: Math 204 or graduate standing.

333 Intermediate Separation Processes (LEC 3.0) Fundamentals of separation operations such as extraction and distillation; rates of diffusion in equilibrium stages and continuous contactors; efficiencies; multistage contactors; performance of equipment; phase equilibrium data; multicomponent separation. Prerequisite: Ch Eng 235 or graduate standing.

335 Intermediate Transport Phenomena (LEC 3.0) The similarities of flow of momentum, heat and mass transfer and the applications of theses underlying principles are stressed. Course is primarily for seniors and beginning graduate students. Prerequisite: Chem Eng 237 or Chem Eng 263 or graduate standing.
339 Introduction to Molecular Modeling and Simulation (LEC 3.0) An introduction to the concepts of molecular-based modeling and simulations, their connections to other engineering approaches and their role in multiscale modeling. Major methodologies such as molecular dynamics and lattice and off-lattice Monte Carlo, and special case studies are discussed. Prerequisite: Chem Eng 247.

340 Biomaterials I (LEC 3.0) This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Cer Eng 340, Bio Sci 340, Met Eng 340)

341 Physical Property Estimation (LEC 3.0) Study of techniques for estimating and correlating thermodynamic and transport properties of gases and liquids. Prerequisite: Ch Eng 235 or graduate standing.

346 Introduction to Nanomaterials (LEC 3.0) Introduction to the fundamentals of nanomaterials and recent developments on nanomaterials. Topics include physical and chemical properties, synthesis, processing, and applications of nanomaterials. Example nanomaterials include nanoparticles, nanotubes, and nanowires. Prerequisite: Chem Eng 145, or Met Eng 125 or Chem 3.

347 Principles Of Engineering Materials (LEC 3.0) Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Ae Eng 377, Physics 377, Mt Eng 377, Cr Eng 377)

349 Structure And Properties Of Polymers (LEC 3.0) A study of the parameters affecting structure and properties of polymers. Syntheses, mechanisms, and kinetic factors are emphasized from the standpoint of structural properties. Prerequisite: Ch Eng 235 or graduate standing.

350 Risk Assessment and Reduction (LEC 3.0) Safe, secure manufacturing facilities protect the health of employees and the public, preserve the environment, and increase profitability. Methods for systematically identifying hazards and estimating risk improve the safety performance and security of manufacturing facilities. Prerequisite: Senior or Graduate Standing. (Co-listed with Eng Mgt 350)

351 Principles Of Environmental Monitoring (LEC 3.0) This course introduces the fundamentals of particle technology, including particle characterization, transport, sampling, and processing. In addition, students will learn about the basic design of some industrial particulate systems and environmental and safety issues related to particulate handling. Prerequisites: Chem Eng 231 and Physics 24, or graduate standing.

355 Intermediate Process Dynamics And Control (LEC 3.0) A study of the dynamic properties of engineering operations and the interrelationships which result when these operations are combined into processes. Formulation of equations to describe open-loop and closed-loop systems. Prerequisite: Chem Eng 235 or graduate standing.

358 Intermediate Chemical Process Safety (LEC 3.0) The identification and quantification of risks involved in the processing of hazardous and/or toxic materials are studied. Methods to design safety systems or alter the chemical process to reduce or eliminate the risks are covered. Prerequisite: Graduate Standing.

359 Plantwide Process Control (LEC 3.0) Synthesis of ntrol schemes for continuous and batch chemical plants from concept to implementation. Multi-loop control, RGA, SVD, constraint control, multivariable model predictive control, control sequence descriptions. Design project involving a moderately complicated multivariable control problem. Prerequisites: Chem Eng 251, Elec Eng 231, Elec Eng 235 or graduate standing. (Co-listed with El Eng 332)

365 Biochemical Reactors (LEC 3.0) Application of chemical engineering principles to biochemical reactors, and human physiology. Emphasis on cells as chemical reactors, enzyme catalysis and biological transport phenomena. Prerequisite: Preceded or accompanied by Chem Eng 281 or graduate standing.

371 Environmental Chemodynamics (LEC 3.0) Interphase transport of chemicals and energy in the environment. Application of the process oriented aspects of chemical engineering and science to situations found in the environment. Prerequisite: Chem Eng 237 or Chem Eng 263 or graduate standing.

372 Alternative Fuels (LEC 3.0) Global energy outlook and available resources are discussed. Alternative energy options and their technologies are covered. Associated environmental concerns and technology are assessed. Special emphases are placed on renewable energies, transportation fuels, energy efficiencies, and clean technologies. Prerequisite: Chem Eng 235 or senior or graduate standing.

373 Pollution Prevention Via Process Engineering (LEC 3.0) To arrive at environmentally benign process design, each processing system will be considered as an inter-connection of elementary units. Systematic methods capitalizing on synergistic process integrations will be employed. Linear, nonlinear and integer optimization, mass/heat exchange networks, and reactor and reaction networks will be used. Prerequisite: Ch Eng 235 or graduate standing.

379 Industrial Pollution Control (LEC 3.0) The study of water, air, and thermal pollution control methods and the application of these methods to the solution of pollution problems in the chemical industry. Prerequisite: Ch Eng 235 or graduate standing.
381 Corrosion And Its Prevention (LEC 3.0) A study of the theories of corrosion and its application to corrosion and its prevention. Prerequisite: Chem 243 or Cer Eng 259. (Co-listed with Met Eng 381)

382 Hazardous Materials Management (LEC 2.0 and LAB 1.0) Major themes: hazard identification and characterization; safety, health and environmental management; and the protection of safety, health and environment. Students will have an understanding of work place and environmental hazards in order to be able to facilitate their management and control. The course will include an intensive 30 hour hands-on workshop. Prerequisite: ChBE 235 or graduate standing.

383 Intermediate Chemical Reactor Design (LEC 3.0) A study of homogeneous and heterogeneous catalyzed and noncatalyzed reaction kinetics for flow and batch chemical reactors. Application to reactor design is stressed. Prerequisite: Ch Eng 281 or graduate standing.

384 Interdisciplinary Problems In Manufacturing Automation (LEC 2.0 and LAB 1.0) The course will cover material necessary to design a product and the fixtures required to manufacture the product. Participants will gain experience with CAD/CAM software while carrying out an actual manufacturing design project. (Co-listed with Mc Eng 344, Eng Mg 344)

385 Patent Law (LEC 3.0) A presentation of the relationship between patent law and technology for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

389 Industrial Chemical Processes (LEC 3.0) Detailed study of various industrial chemical manufacturing processes including underlying chemistry, reaction pathways and separation processes. Prerequisite: Ch Eng 235 or Chem 221, or graduate standing. (Co-listed with Chem 325)

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

410 Seminar (RSD 0.0-6.0) Discussion of current topics.

420 Applied Mathematics In Chemical Engineering (LEC 2.0 and LAB 1.0) An introduction to numerical methods for ordinary and partial differential equations arising in chemical engineering, bioengineering, and environmental engineering applications. Topics include finite difference and finite element methods; other numerical and analytical methods if time permits.

421 Applied Optimization In Chemical Engineering (LEC 3.0) An introduction to modern optimization techniques having applications in engineering economics, data analysis, process design and dynamics; methods such as Fibonacci, Partan, steep ascent, geometric, mathematical and dynamic programming.

425 Philosophy of Scientific Research (LEC 3.0) Organization and planning of research. Introduction to the philosophy and management of scientific research, particularly issues related to ethics, plagiarism, ownership of intellectual properties, research techniques, technical presentations and time management. The course will address these issues by integrating with case studies. (Co-listed with IDE 425, Civ Eng 485, Env Eng 485, Elec Eng 481, Comp Eng 481)

433 Advanced Transport Phenomena (LEC 3.0) Course is concerned with all aspects of transport phenomena. Complete expressions for heat, mass and momentum transfer in all three coordinate systems are applied under both laminar and turbulent conditions.

440 Biomaterials II (LEC 3.0) This course will introduce graduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. A term paper and oral presentation are required. Prerequisite: Graduate Standing. (Co-listed with Cer Eng 440, Bio Sci 440, Met Eng 440)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>443</td>
<td>Nanomaterials (LEC 3.0) Introduction of the fundamentals of nanomaterials and recent developments on nanomaterials. Topics include physical and chemical properties, synthesis, processing, and applications of nanomaterials. Example nanomaterials include nanoparticles, nanotubes, and nanowires. Students will need to complete a project related to nanomaterials. Prerequisite: Graduate Standing. (Co-listed with MS&E 443)</td>
<td></td>
</tr>
<tr>
<td>445</td>
<td>Advanced Chemical Engineering Thermodynamics (LEC 3.0) Extension of thermodynamic principles as applied to nonideal systems. Use of existing thermodynamic data and correlations with emphasis on applications of chemical engineering problems in energy, mass and momentum transfer.</td>
<td></td>
</tr>
<tr>
<td>446</td>
<td>Molecular Modeling and Simulation (LEC 3.0) Study of molecular-based modeling and simulation methodologies and their connections with each other and to multiscale modeling and other engineering approaches. Molecular Dynamics, Monte Carlo, Brownian Dynamics, statistical mechanics, and application cases in engineering and science are included. Prerequisite: Chem Eng 445.</td>
<td></td>
</tr>
<tr>
<td>447</td>
<td>Physicochemical Operations In Environmental Engineering Systems (LEC 3.0) Course covers physicochemical operations and design in water, wastewater and aqueous hazardous waste treatment systems including coagulation, precipitation, sedimentation, filtration, gas transfer, chemical oxidation and disinfection, adsorption, ion exchange. Prerequisite: Civ Eng 230 or equivalent. (Co-listed with Env Eng 462 and Civ Eng 462)</td>
<td></td>
</tr>
<tr>
<td>481</td>
<td>Advanced Chemical Reactor Design (LEC 3.0) A study of homogeneous and heterogeneous reaction kinetics and catalysis with special emphasis on effects of mixing in design and scale-up of chemical reactors.</td>
<td></td>
</tr>
<tr>
<td>488</td>
<td>Advanced Chemical Process Design (LEC 2.0 and LAB 1.0) The use of advanced methods of economic, engineering, optimizing, and control techniques in planning, designing, and operating chemical process industries. Topics may be adjusted to include those of special interest or need in the above fields.</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.</td>
<td></td>
</tr>
<tr>
<td>491</td>
<td>Internship (IND 0.0-15.0) Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.</td>
<td></td>
</tr>
<tr>
<td>493</td>
<td>Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.</td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.</td>
<td></td>
</tr>
</tbody>
</table>

Civil Engineering Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.</td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>Geomatics (LEC 3.0) Horizontal and vertical geodetic datums and networks. Theory, calculations and applications of State Plane Coordinate Systems. Introduction to Geographic and Land Information Systems: hardware and software issues; data quality and accuracy; resource, environmental, cadastral and governmental applications; databases; GIS/LIS trends. Introduction to Global Positioning Systems (GPS): Project planning, data collection, data processing and network adjustment applications, Kinematic and RealTime GPS applications, hardware and software options and costs. Prerequisite: Civ Eng 1 with grade of "C" or better.</td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>Legal Aspects Of Boundary Surveying (LEC 3.0) The U.S. Public Land Survey System (USPLSS): original GLO survey instructions and procedures. Resurveys on the USPLSS law, standards, procedures with emphasis on Missouri. Rights in real property; statute, case and administrative law applied to boundaries. Simultaneous and sequence conveyances. Unwritten rights in real property. Riparian boundaries. Writing and interpreting boundary descriptions. Land surveyor duties and responsibilities. Prerequisite: Civ Eng 1 with grade of "C" or better.</td>
<td></td>
</tr>
</tbody>
</table>
Instrumentation: total stations, electronic levels, instrument calibrations. Prerequisite: Civ Eng 1 with grade of "C" or better.

310 Seminar (LEC 1.0) Discussion of current topics. Prerequisite: Senior standing.

311 Geometric Design Of Highways (LEC 2.0 and LAB 1.0) Development and applications of concepts of geometric design for rural and urban highways. Design controls and criteria; elements of design, including sight distance, horizontal and vertical alignment; cross-section elements; highway types; intersection design elements; types of interchanges and interchange design elements; grade separations and clearance; development of visual elements. Prerequisite: Civ Eng 211 with grade of "C" or better.

312 Bituminous Materials (LEC 2.0 and LAB 1.0) Properties, types, and grades of bituminous materials are presented. Emphasis is placed on usage, distress, surface treatment design, and asphalt concrete mix properties, behavior, design manufacture, and construction. Prerequisite: Preceded or accompanied by Civ Eng 216.

313 Composition And Properties Of Concrete (LEC 3.0) Properties of plastic and hardened concrete and the influence of cements, aggregates, water and admixtures upon these properties. The microstructure of cement gel and other factors are related to the behavior of hardened concrete under various types of loading and environments, drying shrinkage, creep and relaxation, fatigue, fracture, and durability. Introduction to statistical quality control of concrete production. Prerequisite: Civ Eng 216 with a grade of "C" or better.

314 Geosynthetics In Engineering (LEC 3.0) Geotechnical principles are applied to design of geosynthetic systems for foundation support, earth retention, drainage, and disposal of hazardous conventional wastes. Geosynthetic testing and identification. Emphasis is on design of geosynthetic earth reinforcement, roadway stabilization, filters, and waste containment systems. Prerequisites: Civ Eng 215 with grade of "C" or better.

315 Intermediate Soil Mechanics (LEC 3.0) General principles of soil mechanics and their applications, including mineralogy, soil structure, flow through porous media, shear strength, slope stability and consolidation. Prerequisites: Civ Eng 215 with grade of "C" or better.

316 Geotechnical Earthquake Engineering (LEC 3.0) Geotechnical earthquake hazards and mitigations, damage to structures, plate tectonics, seismicity, wave propagation, characterization of ground motions, theory of vibrations (1-DOF), effect of local soil conditions on ground response, development of design ground motions, liquefaction, dynamic lateral earth pressures and slope stability/deformation. Prerequisites: Civ Eng 215 with a grade of "C" or better.

317 Asphalt Pavement Design (LEC 3.0) Structural design of flexible pavements including loading characteristics, properties of pavement components, stress distribution, and the effects of climatic variables on design criteria. Prerequisite: Civ Eng 216 with a grade of "C" or better.

318 Smart Materials And Sensors (LEC 2.0 and LAB 1.0) Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multidisciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior Standing and Math 204. (Co-listed with Aero Eng 329, Mech Eng 329 and Elect Eng 329)

319 Applied Mechanics In Structural Engineering (LEC 3.0) A study of the basic relationships involved in the mechanics of structures. Topics include basic elasticity, fundamental theories of bending and buckling of plates and cylindrical shells for practical application in analysis and design of bridge, building floors, and shell roofs. Prerequisite: Civ Eng 217 with grade of "C" or better. (Co-listed with Arch Eng 319)

320 Structural Analysis II (LEC 3.0) Classical displacement and force methods applied to structures of advanced design. Analysis of indeterminate structures such as continuous beams, arches, cables, and two and three dimensional frames, and trusses. Analysis of indeterminate structures involving temperature and support settlements effects. Prerequisites: Civ Eng 217 or Arch Eng 217. (Co-listed with Arch Eng 320)

322 Analysis And Design Of Wood Structures (LEC 3.0) A critical review of theory and practice in design of modern wood structures. Effect of plant origin and physical structure of wood on its mechanical strength; fasteners and their significance in design; development of design criteria and their application to plane and three dimensional structures. Prerequisite: Civ Eng 217 with grade of "C" or better. (Co-listed with Arch Eng 320)

323 Computer Methods Of Structural Analysis (LEC 3.0) Force and displacement matrix methods and computer methods applied to structural analysis. Analysis of indeterminate structures such as continuous beams, and two and three dimensional frames and trusses. Analysis of indeterminate structures involving temperature and support settlements effects using computer methods formulation. Prerequisite: Civ Eng 217 with grade of "C" or better. (Co-listed with Arch Eng 323)

326 Advanced Steel Structures Design (LEC 3.0) The design of structural steel systems into a final integrated structure. Plate girders, composite systems, stability, connections, rigid frames, single and multistory buildings, and similar type problems of interest to the student. Use of the computer as a tool to aid in the design will be emphasized. Prerequisites: Civ Eng 221 with a grade of "C" or better. (Co-listed with Arch Eng 326)
327 Advanced Concrete Structures Design (LEC 3.0)
The design of structural concrete systems into a final integrated structure. Two-way slabs, long columns, connections, and discontinuity regions, deflections and cracking of beams and slabs, ACI design criteria, and similar type problems of interest to the student. Use of the computer as a tool to aid in the design will be emphasized. Prerequisite: Cv Eng 223 with a grade of "C" or better. (Co-listed with Arch Eng 327)

328 Prestressed Concrete Design (LEC 3.0) Behavior of steel and concrete under sustained load. Analysis and design of pre-tensioned and post-tensioned reinforced concrete members and the combining of such members into an integral structure. Prerequisite: Cv Eng 223 with a grade of "C" or better. (Co-listed with Arch Eng 328)

329 Foundation Engineering II (LEC 3.0) Classical earth pressure theories. Analysis of shallow and deep foundations to include bearing capacity and settlement of footings, rafts, piles, and drilled piers. Analysis of stability and design of retaining walls and anchored bulkheads. Prerequisites: Cv Eng 229 with a grade of "C" or better. (Co-listed with Arch Eng 329)

330 Unsteady Flow Hydraulics (LEC 3.0) The study of unsteady flow and its effect on closed water systems and in open channels. Prerequisites: Cv Eng 230 with a grade of "C" or better.

331 Hydraulics Of Open Channels (LEC 3.0) The phenomena accompanying the flow of water in open channels, such as uniform and varied flow, critical conditions, backwater curves, hydraulic jump, hydraulic drop and applications are studied in detail. Prerequisites: Cv Eng 230 with a grade of "C" or better.

333 Intermediate Hydraulic Engineering (LEC 3.0) Application of fluid mechanics principles to the design. Kinematics of fluid motion, conservation of mass, linear and angular momentum, and energy. Requirements for similarity of fluid flow. Introduction to dynamics of fluid flows and viscous incompressible flows. Prerequisites: Cv Eng 230 with a grade of "C" or better.

335 Water Infrastructure Engineering (LEC 2.0 and LAB 1.0) Fundamental principles underlying comprehensive water infrastructure development; sanitary sewers, sanitary treatment facilities, stormwater sewers, stormwater detention, water power development, and hydraulic structures. The student is responsible for the planning and design of a water infrastructure development project. Prerequisite: Cv Eng 230 with a grade of "C" or better.

337 River Mechanics And Sediment Transport (LEC 3.0) Formation of rivers and the laws governing river regulation and improvements, including navigation and flood protection. Principles governing sediment transport. Prerequisites: Cv Eng 230 with a grade of "C" or better.

338 Hydrologic Engineering (LEC 3.0) A study of current up-to-date hydrologic techniques involving design of hydrologic input for bridges, culverts, reservoirs. Techniques involve extreme value statistics, model hydrographs, routing, etc. Prerequisites: Cv Eng 234 with a grade of "C" or better.

341 Professional Aspects Of Engineering Practice (LEC 3.0) A study of engineering registration laws, regulations, rules of professional responsibility and standards of practice. Review of causative factors of selected failures and their relationship to professional responsibility. Prerequisite: Senior standing.

342 Construction Planning and Scheduling Strategies (LEC 3.0) The goal of this course is to assist participants in gaining an understanding of schedule control techniques and the application of tools such as Primavera Software. Content areas to be addressed include: development of baseline schedules, progress monitoring and updating, recovery schedules, resource application and leveling. Prerequisite: Civ Eng or Arch Eng 248. (Co-listed with Arch Eng 342)

345 Construction Methods (LEC 3.0) Introduction to construction planning, selection of equipment and familiarization with standard methods for horizontal and vertical construction. Application of network analysis and schedules to project control. Prerequisite: Cv Eng 248 with a grade of "C" or better. (Co-listed with Arch Eng 345)

346 Management Of Construction Costs (LEC 3.0) Management of construction projects from inception to completion: estimates, role of network preplanning, project monitoring and control. Prerequisites: Cv Eng 248 with a grade of "C" or better. (Co-listed with Arch Eng 346)

348 Green Engineering: Analysis of Constructed Facilities (LEC 3.0) Environmentally sound design and construction practices. Includes design issues, material selection and site issues that can reduce the impact on the environment caused by the construction process. LEED certification covered in depth. Prerequisites: Civ Eng 248 or Arch Eng 248; and Junior Standing. (Co-listed with Arch Eng 348)

349 Engineering And Construction Contract Specifications (LEC 3.0) Legal and business aspects of contracts and contracting procedure in the construction industry. Topics include formulation of contracts in common law, engineering services contracts, and construction project contract documents and contract administration issues. Prerequisite: Civ Eng 248 with a grade of "C" or better. (Co-listed with Arch Eng 349)

351 Transportation Applications of Geophysics (LEC 2.0 and LAB 1.0) Overview of geophysical and non-destructive test methods that are commonly used to
142 - Civil Engineering Courses

365 Sustainability, Population, Energy, Water, and Materials (LEC 3.0) This course will examine the concepts regarding the continued advancement of humankind while maintaining our ecological niche on earth. Key topics include: population growth, poverty, and impacts of development; energy consumption, sources, storage, conservation and policy; water quality and quantity; materials and building; and policy implications. Prerequisite: Senior or graduate standing. (Co-listed with Env Eng 365 and Arch Eng 365)

366 Indoor Air Pollution (LEC 3.0) By developing a practical understanding of indoor air pollution sources, physics, chemistry and consequences, students will learn how radon, cigarette smoke, VOCs from furnishings, and so forth affect indoor air quality and apply engineering analyses to specify ventilation rates, choose furnishings and minimize occupant exposure to pollutants. Prerequisite: Civ Eng 261 or Mech Eng 371 or Graduate Status. (Co-listed with Env Eng 366 and Arch Eng 366)

367 Introduction to Air Pollution (LEC 3.0) Introduction to the field of air pollution dealing with sources, effects, federal legislation, transport and dispersion and principles of engineering control. Prerequisite: Civ Eng 230; or graduate standing. (Co-listed with Env En 367)

368 Air Pollution Control Methods (LEC 3.0) Study of the design principles and application of the state-of-the-art control techniques to gaseous and particulate emissions from fossil fuel combustion, industrial and transportation sources. Prerequisite: Civ Eng 230; or graduate standing. (Co-listed with Env En 368)

369 Environmental Engineering Design (LEC 2.0 and LAB 1.0) Functional design of water and wastewater facilities and other environmental cleanup systems. Prerequisite: Civ Eng 265 or Env Eng 265. (Co-listed with Env Eng 369)

373 Air Transportation (LEC 2.0 and LAB 1.0) Runway configuration, airfield capacity, geometrics and terminal layout and design. Aircraft performance; navigation and air traffic control; airport planning and design; airline operations; aviation systems planning. Prerequisite: Civ Eng 211 with a grade of "C" or better.

374 Infrastructure Strengthening With Composites (LEC 3.0) The course presents composite materials and includes principles of reinforcing and strengthening for flexure, shear, and ductility enhancement in buildings and bridges. It covers the design of existing members strengthened with externally bonded laminates and near surface mounted composites. Case studies are discussed. Prerequisites: Civ Eng / Arch Eng 217, Civ Eng / Arch Eng 223. (Co-listed with Arch Eng 374)

375 Low-Rise Building Analysis And Design (LEC 3.0) Characterization of various design loads, load combinations, general methodology of structural designs against lateral loads, code-oriented design procedures, distribution of lateral loads in structural systems, application of the International Building
Code in design of loadbearing wall systems, building frame system and moment-resisting frame systems. Prerequisite: Preceded and/or accompanied by Civ - Arch Eng 221 or Civ-Arch Eng 223. (Co-listed with Arch Eng 375)

380 Water Resources And Wastewater Engineering (LEC 3.0) Application of engineering principles to the planning and design of multipurpose projects involving water resources development and wastewater collection/treatment/disposal/systems. Latest concepts in engineering analysis are applied to evaluation of alternative solutions. Prerequisites: Cv Eng 233, 235, 265. (Co-listed with Env En 380)

382 Teaching Engineering (LEC 3.0) Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Env En 380)

384 Structural Dynamics (LEC 3.0) This course deals with fundamental concepts and structural responses under dynamic loads. Hand calculations and computer methods are developed. Specific topics include resonance, beating phenomenon, equation of motion, dynamic properties, frequencies and mode shapes, and modal and Ritz analyses. Prerequisites: IDE 150 or equivalent; CE/Arch 217 or equivalent. (Co-listed with Arch 384)

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

410 Seminar (RSD 0.0-6.0) Discussion of current topics.

411 Transportation Systems Analysis (LEC 3.0) Concepts and principles fundamental to the planning, design, operation, and management of transportation systems using a systems perspective to transportation problems. Concepts from economics, engineering, operations research, management, psychology, and public policy analysis are used throughout. Topics include linear and non-linear programming, dynamic programming, supply-demand microeconomic framework, analysis of transportation demand, system performance, network equilibrium, simulation and associated case studies. Prerequisite: Cv Eng 353.

412 Computer Modeling in Geotechnical Engineering (LEC 3.0) Survey of computer methods of analyzing and modeling complex geotechnical engineering problems. Computer applications, data analysis, and result interpretations. Topics include constitutive modeling, foundation engineering, seepage, unsaturated flow problem, slope stability analysis, consolidation, excavation, tunneling, and dynamic soil-structure interaction. Prerequisite: Civ Eng 215 and graduate standing.

413 Dynamics Of Earth Materials (LEC 3.0) Theory of vibration, spectral response, site-specific response spectra, detailed design of retaining structures, pile and machine foundations, soil structure interaction. Dynamic soil properties, including degradation of soil properties and liquefaction, seismic slope stability analysis problem solving. Select research topics and use of computer codes. Prerequisite: Preceded or accompanied by Cv Eng 316.

414 Measurement Of Soil Properties (LEC 2.0 and LAB 1.0) Laboratory determination of soil properties with emphasis on practical. Applications of test data. Tests include classification, atterberg limits, consolidation, compaction, triaxial shear tests with pore pressure measurement, and direct shear tests. Preparation of technical reports. Prerequisite: Preceded or accompanied by Cv Eng 315.

415 Advanced Soil Mechanics (LEC 3.0) Advanced topics and recent advances in theoretical soil mechanics. Topics may include stress distribution, failure theories, shear failure in ideal soils, consolidation and settlement, physico-chemical properties, and clay mineralogy. Prerequisite: Cv Eng 315.

416 Soil Stabilization (LEC 3.0) The application of mineralogical and physicochemical principles to soil stabilization problems and stabilization techniques for highway and foundation applications. Prerequisite: Cv Eng 315.

417 Earth Dams And Related Problems (LEC 3.0) The exploration for and selection of site and materials, seepage analysis, slope stability and design, embankment design, compaction, instrumentation and construction operations as they pertain to earth and rockfill dams. Prerequisite: Cv Eng 315.

419 Advanced Behavior Of Reinforced And Prestressed Concrete (LEC 3.0) Behavior of reinforced and prestressed concrete sections, members and wall/shell-type elements subjected to bending, axial load, shear and torsion. Confinement of concrete. Various truss model theories applicable to main members and strut-tie model applicable to disturbed regions, joints, and connections. Prerequisite: Cv Eng 223 with grade of "C" or better.

421 Plastic Analysis And Design Of Metal Structures (LEC 3.0) Behavior of engineering materials in the inelastic stress range. Analysis and design of elementary structural members and frames.

422 Analysis And Design Of Plates And Shells I (LEC 3.0) Fundamental theories of bending and buckling of plates for practical applications in analysis and design of bridge and building floors, highway and airport pavements, and structural plate components. Shell theory with application to tanks, pressure vessels, shell roofs, and folded plate construction. Prerequisite: Preceded or accompanied by Cv Eng 323.
424 Structural Dynamics And Earthquake Engineering (LEC 3.0) Behavior of structural materials, elements, and systems under earthquake loads; computer methods for response analysis of lumped and distributed mass models, eigensolution techniques, response spectral analysis, design of 2-D and 3-D seismic-resistant structures with current design codes. Prerequisites: CE/Arch 384 or equivalent.

426 Advanced Design In Steel And Lightweight Structures (LEC 3.0) A critical evaluation of the theories of design and actual behavior of metal components and their connections. The basis of the development of the pertaining codes will be considered. Prerequisite: Preceded or accompanied by Cv Eng 323.

428 Analysis Of Nonlinear Structures (LEC 3.0) Inelastic behavior of structural members and connections; formulation of various models for steel reinforced concrete including elasto-plastic, bilinear, trilinear, Ramberg-Osgood, Cheng-Mertz, and Cheng-Lou; matrix analysis of 2-D and 3-D building structures for geometric and material nonlinearity; dynamic and stability analysis. Prerequisite: Preceded or accompanied by Cv Eng 323.

429 Foundation Engineering III (LEC 3.0) A critical study of modern concepts of foundation engineering including current procedure for the application of soil mechanics principles to the design of foundations, embankments and retaining structures. Case histories will be emphasized with the student making successive design decisions.

431 Advanced Hydraulics And Hydraulic Engineering (LEC 0.0-6.0) Studies in the field of hydraulic engineering to fit the needs of a particular student or class. Each student makes a complete design of a hydraulic development in one of the following fields: water power, sanitation, river and harbor projects. Prerequisite: Cv Eng 230.

435 Hydraulic Structures (LEC 0.0-3.0) Gravity, arch, multiple arch, and buttress dams including appurtenances such as spillways, penstocks and gates. Latter part of course is designed to needs of the individual student with applications to river and harbor structures, canal and irrigation structures, and sewage structures. Prerequisites: Cv Eng 223 and 230.

438 Advanced Hydrology (LEC 3.0) A study of methods used in modern hydrologic analysis and design. Items of study include hydrography analysis, maximum possible storm, infiltration, design flood determination and project feasibility. Prerequisite: Cv Eng 233.

440 Urban Hydrology (LEC 3.0) Studies of the influence of urban areas on their hydrology. Special emphasis on the principles of spatially varied unsteady flow. Model hydrographs leading toward determination of design storm flow are utilized to obtain information necessary for design of storm sewers, channels, and hydraulic structures common to urban areas. Prerequisite: Cv Eng 233.

442 Construction Administration, Planning And Control (LEC 3.0) Study of construction project development and execution, ranging from preliminary engineering to project turnover. Key topics include bidding strategies, quality control, conceptual estimating, scheduling, progress and cost control, value engineering, safety and construction productivity. Prerequisite: Preceded or accompanied by Cv Eng 345.

443 Contract Formulation And Project Delivery Systems (LEC 3.0) Project life-cycle planning and management. Roles and responsibilities of contract participants. Construction contract formulation. Obtaining work by negotiating and by bidding. Forms and variations of project delivery systems. Prerequisite: Cv Eng 345 or Cv Eng 349.

445 Advanced Construction Engineering (LEC 3.0) Study of the temporary structures and plant used in construction. Key topics include legal implications, codes and regulations, falsework, slipforming, bridge construction supports, and protection of adjacent facilities. Prerequisite: Preceded or accompanied by Cv Eng 345.

453 Transportation Planning (LEC 3.0) Study of urban development, mobility patterns, and the transportation network. Transportation modeling techniques; transportation control plans to improve air quality; consideration of the transportation disadvantaged; transportation planning in smaller cities and rural areas. Access management and site impact analysis of traffic generators. Prerequisite: Cv Eng 353 or consent of instructor.

456 Traffic Modeling and Simulation (LEC 3.0) Fundamentals of system simulation, components of a simulation model, traffic flow simulation approaches, traffic flow simulation software and their applications, building simulation models, verification and validation of a simulation model, output analysis, variance reduction techniques, role of simulation in Intelligent Transportation Systems (ITS). Prerequisites: Stat 213, Civ Eng 211 preceded or accompanied by Civ Eng 353.
457 Traffic Flow Theory and Characteristics (LEC 3.0) This course will cover advanced theories of traffic flow, traffic flow characteristics, statistical distributions of traffic flow parameters, traffic stream models, car following models, shock wave analysis, queuing analysis, traffic flow models for intersections, traffic simulation. Prerequisites: Preceded or accompanied by Civ Eng 353, knowledge of statistics, graduate standing or consent of instructor.

460 Chemical Principles In Environmental Engineering (LEC 3.0) The course develops fundamental chemical and physical principles underlying environmental engineering systems including drinking water, groundwater, and wastewater treatment; and natural environmental processes. Topics include adsorption, complex formation, acid-base equilibria, solubility, mass transfer and diffusion, electrochemistry, and chemical kinetics. Prerequisite: Graduate Standing. (Co-listed with Env En 460)

461 Biological Principles In Environmental Engineering Systems (LEC 2.0 and LAB 1.0) Course covers the fundamental biological and biochemical principles involved in natural and engineered biological systems. (Co-listed with Env En 461)

462 Physicochemical Operations In Environmental Engineering Systems (LEC 3.0) Course covers physicochemical operations and design in water, wastewater and aqueous hazardous waste treatment systems including coagulation, precipitation, sedimentation, filtration, gas transfer, chemical oxidation and disinfection, adsorption, ion exchange. Prerequisite: Civ Eng 230 or equivalent. (Co-listed with Env Eng 462 and Chem Eng 470)

463 Biological Operations In Environmental Engineering Systems (LEC 3.0) Course covers biological operations and design in water, wastewater and aqueous hazardous waste treatment systems including modeling of biological treatment processes; and design of activated sludge systems, trickling filters, rotating biological contractors, lagoons, nitrification and denitrification, and digestion processes. Prerequisite: Civ Eng 230 or equivalent. (Co-listed with Env En 463)

464 Industrial And Hazardous Waste Treatment (LEC 2.0 and LAB 1.0) Course covers fundamentals of industrial and hazardous wastewater treatment systems and characterization including physical, chemical and biological processes and laboratory pilot plant investigations. (Co-listed with Env En 464)

465 Environmental Engineering Analysis Laboratory (LEC 1.0 and LAB 2.0) Environmental Engineering analytical principles and techniques applied to the quantitative measurement of water, wastewater and natural characteristics, and application of advanced instrumentation methods in Environmental Engineering. Prerequisite: Civ Eng 261 or equivalent, with a grade of “c” or better. (Co-listed with Env En 465)

467 Environmental Chemistry (LEC 2.0 and LAB 1.0) This course covers the fundamental and applied aspects of environmental chemistry including inorganic, organic, and analytical chemical principles. The course emphasizes the aquatic environmental and covers gas laws and solubility, chemical modeling, equilibria, acid-base and complexation relationships, oxidation and photochemical reactions. Prerequisite: Graduate standing in engineering or science curricula. (Co-listed with Env En 467)

485 Philosophy of Scientific Research (LEC 3.0) Organization and planning of research. Introduction to the philosophy and management of scientific research, particularly issues related to ethics, plagiarism, ownership of intellectual properties, research techniques, technical presentations and time management. The course will address these issues by integrating with case studies. (Co-listed with Chem Eng 425, IDE 425, Env Eng 485, Elec Eng 481, Comp Eng 481)

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Computer Engineering

300 Special Problems (IND 1.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 1.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

311 Introduction To VLSI Design (LEC 3.0) An introduction to the design and analysis of digital integrated circuits (ICs). Topics include basic manufacturing techniques, transistor-level design and analysis of logic and memory circuits, logic timing, and parasitics. Computer aided design tools are used to develop circuits in the lab. Prerequisites: Elec Eng 121 and Comp Eng 111.
312 **Digital Systems Design Laboratory** (LEC 2.0 and LAB 1.0) Experimental studies of problems with high speed digital signals in circuits. Student designs, wires, tests, and programs a microprocessor based single board computer project. A FPGA design is programmed and tested. Prerequisite: Cp Eng 213 or 313.

313 **Principles of Computer Architecture** (LEC 3.0) Principles of performance measurement and instruction set design; advanced issues in pipelining; instruction level parallelism (dynamic scheduling, branch prediction, multi-issue processors); memory hierarchies for superscalar processors; multiprocessors; multi-threading; storage systems; and interconnection networks. Prerequisite: Comp Eng 215.

314 **Embedded Processor System Design** (LEC 3.0) Development of hardware and software for embedded systems, including real-time operating systems advanced programming, communication schemes, hardware peripherals and sensors, control methodologies, printed-circuit board design, interrupts, microcontrollers, and hardware-software co-design. One or more team design projects. Prerequisites: Comp Eng 213 or equivalent and 80x51 processor experience.

315 **Digital Computer Design** (LEC 3.0) Organization of modern digital computers; design of processors, memory systems and I/O units, hardware-software tradeoffs in different levels of computer system design. Prerequisites: Cp Eng 213 and Cp Eng 214.

316 **Advanced Microcomputer System Design** (LEC 3.0) The design of digital systems based on advanced microprocessors. Introduction to microcomputer logic development systems. I/O interfaces. Assembly and high level language tradeoffs. Hardware and software laboratory projects required. Prerequisite: Cp Eng 313.

317 **Fault-Tolerant Digital Systems** (LEC 3.0) Design and analysis of fault-tolerant digital systems. Fault models, hardware redundancy, information redundancy, evaluation techniques, system design procedures. Prerequisites: Cp Eng 111 and Cp Eng 112.

318 **Digital System Modeling** (LEC 3.0) Digital system modeling for simulation, synthesis, and rapid system prototyping. Structural and behavioral models, concurrent and sequential language elements, resolved signals, generics, configuration, test benches, processes and case studies. Prerequisite: Comp Eng 111 with a grade of "C" or better.

319 **Digital Network Design** (LEC 3.0) Design of computer networks with emphasis on network architecture, protocols and standards, performance considerations, and network technologies. Topics include: LAN, MAN, WAN, congestion/flow/error control, routing, addressing, broadcasting, multicasting, switching, and internetworking. A modeling tool is used for network design and simulation. Prerequisite: Comp Eng 213 or computer hardware competency.

325 **Optical Computing** (LEC 3.0) Introduction to the principles, subsystems, and architectures of optical computing. Topics include characteristics of optical devices; optical implementations of memory, logic elements, and processors; and computational structures. Prerequisite: Comp Eng 111 or equivalent. (Co-listed with Elec Eng 325)

325 **Optical Computing** (LEC 3.0) Introduction to the principles, subsystems, and architectures of optical computing. Topics include characteristics of optical devices; optical implementations of memory, logic elements, and processors; and computational structures. Prerequisite: Comp Eng 111 or equivalent. (Co-listed with Elec Eng 325)

331 **Real-Time Systems** (LEC 3.0) Introduction to real-time (R-T) systems and R-T kernels, also known as R-T operating systems, with an emphasis on scheduling algorithms. The course also includes specification, analysis, design and validation techniques for R-T systems. Course includes a team project to design an appropriate R-T operating system. Prerequisite: Cp Eng 213 or Cmp Sc 284.

342 **Real-Time Digital Signal Processing** (LEC 2.0 and LAB 1.0) Introduction to the use of programmable DSP chips. Includes real-time data acquisition, signal generation, interrupt-driven programs, high-level language, and assembly level routines. Applications to real-time systems are also presented. Prerequisite: Elec Eng 215 or Elec Eng 267.

345 **Digital Image Processing** (LEC 3.0) Fundamentals of human perception, sampling and quantization, image transforms, enhancement, restoration, channel and source coding. Prerequisite: El Eng 267 (Co-listed with El Eng 345)

347 **Machine Vision** (LEC 3.0) Image information, image filtering, template matching, histogram transformations, edge detection, boundary detection, region growing and pattern recognition. Complementary laboratory exercises are required. Prerequisites: Comp Eng 111 and preceded or accompanied by Elec Eng 267. (Co-listed with Elec Eng 347)

348 **Wireless Networks** (LEC 2.0 and LAB 1.0) Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols, wireless LAN, IEEE 802.11, and adhoc and sensor networks. Prerequisites: Hardware competency, Elec Eng 243 or Comp Eng 213 and graduate standing. (Co-listed with Elec Eng 348 and Sys Eng 348)

349 **Trustworthy, Survivable Computer Networks** (LEC 3.0) This course examines basic issues in network management, testing, and security; it also discusses key encryption, key management, authentication, intrusion detection, malicious attack, and insider threats. Security of electronic mail and electronic commerce systems is also presented. Prerequisite: Cp Eng 319 or Comp Sc 265.
354 Mathematical Logic I (LEC 3.0) A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 15 with junior standing or Math 305 or Comp Sci 253 or Comp Eng 111. (Co-listed with Comp Sci 354, Philos 354 and Math 354)

358 Computational Intelligence (LEC 3.0) Introduction to Computational Intelligence (CI), Biological and Artificial Neuron, Neural Networks, Evolutionary Computing, Swarm Intelligence, Artificial Immune Systems, Fuzzy Systems, and Hybrid Systems. CI application case studies covered include digital systems, control, power systems, forecasting, and time-series predictions. Prerequisite: Stat 217. (Co-listed with Elec Eng 367 and Sys Eng 367)

372 Signal Integrity In High-Speed Digital & Mixed Signal Design (LEC 3.0) Signal integrity ensures signals transmitted over a propagation path maintain sufficient fidelity for proper receiver operation. Compromised signal integrity is often associated with parasitics (e.g. unintentional inductance, capacitance). Theory and CAD tools used for signal integrity analysis of functioning designs. Prerequisites: El Eng 271 or Cp Eng 213, and Senior standing. (Co-listed with El Eng 372)

378 Mechatronics (LEC 2.0 and LAB 1.0) This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 279 or equivalent. (Co-listed with Mech Eng 378, Aero Eng 378 and Elec Eng 378)

382 Teaching Engineering (LEC 3.0) Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mg 370, Env En 382, El Eng 382, Cv Eng 382)

388 Introduction to Robotics (LEC 3.0) This course provides an introduction to robotics, covering robot hardware, fundamental kinematics, trajectories, differential motion, robotic decision making, and an overview of current topics in robotics. Prerequisite: A "C" or better in both Math 208 and Comp Sci 153. (Co-listed with Comp Sci 345 and Elec Eng 388)

390 Undergraduate Research (IND 1.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

391 Computer Engineering Senior Project I (RSD 0.5 and LAB 0.5) A complete design cycle. Working in small teams, students will design, document, analyze, implement, and test a product. Topics include: Iteration in design, prototyping, group dynamics, design reviews, making effective presentations, concurrent design, designing for test, ethics and standards, testing and evaluation. Prerequisites: Stat 217, Comp Eng 111, Econ 121 or 122, Sp&M S 85, English 160, Comp Eng 213, 214, 215, and Elec Eng 121.

392 Computer Engineering Senior Project II (LAB 3.0) A continuation of Cp Eng 391. Prerequisite: Cp Eng 391.

400 Special Problems (IND 1.0-6.0) Problems or readings on specific subjects or projects in the department. Prerequisite: Consent of the instructor.

401 Special Topics (Variable 1.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title. Prerequisite: Consent of the instructor.

404 Data Mining And Knowledge Discovery (LEC 3.0) Data mining and knowledge discovery utilized both classical and new algorithms, such as machine learning and neural networks, to discover previously unknown relationships in data. Key data mining issues to be addressed include knowledge representation and knowledge acquisition (automated learning). Prerequisites: (Comp Sci 338 or Comp Sci 347) and Stat 215. (Co-listed with Comp Sci 434 and Sys Eng 404)

409 Design Automation of VLSI Systems (LEC 3.0) This course covers fundamentals in VLSI design automation. Topics include logic synthesis, design planning and optimization, placement and routing, parasitic extraction, circuit simulation, timing analysis, design verification and testing. Prerequisite: Comp Eng 311.

411 Advanced VLSI Design (LEC 3.0) Advanced topics in chip-level VLSI design, including issues related to high-performance, low-power, analog and mixed-signal circuits, reliability, noise and coupling mechanisms, computer aided design tools, and recent advances and trends in the field. Prerequisite: Comp Eng 311 is required.

412 Digital Logic (LEC 3.0) Digital logic analysis, synthesis and simulation. Design automation of digital systems. Prerequisites: Cp Eng 111 and Cp Eng 112.

415 Advanced Computer Architecture I (LEC 3.0) Advanced topics in computer structures, parallel processors, and computer networks. Emphasis on their design, applications, and performance. Prerequisite: Cp Eng 313 or Cp Eng 315.

416 Advanced Computer Architecture II (LEC 3.0) Continuation of Computer Engineering 415. Prerequisite: Cp Eng 415.

417 Network Performance Analysis (LEC 3.0) Provides an introduction to performance modeling and analysis of computer networks. Topics include stochastic processes; performance measurement
and monitoring; quantitative models for network performance, e.g., Markovian models for queues; simulation; and statistical analysis of experiments. Prerequisites: Comp Eng 319 or Comp Sci 365; Stat 217 or 343. (Co-listed with Comp Sci 417)

419 **Network Centric Systems** (LEC 3.0) Network-centric systems comprise a diverse category of complex systems with the primary purpose of providing network-type services. Network-centric systems are also known as collaborative systems. This course addresses the intersection between network engineering and the needs of systems architecting and engineering. Prerequisite: Sys Eng 469 or graduate standing. (Co-listed with Sys Eng 419)

439 **Clustering Algorithms** (LEC 3.0) An introduction to cluster analysis and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student's degree program. (Co-listed with Sys Eng 419, Comp Sci 449 and Stat 439)

443 **Wireless Ad hoc and Sensor Networks** (LEC 3.0) Introduction to ad hoc and sensor networks, IEEE standards, heterogeneity, quality of service, wireless channel issues, energy awareness, power and topology control, routing, scheduling, rate adaptation, self-organization, admission and flow control, energy harvesting, security and trust levels, hardware and applications. Prerequisite: Comp Eng 348 or Comp Eng 349 or equivalent. (Co-listed with Elec Eng 439, Sys Eng 349, Comp Sci 449 and Stat 439)

448 **High Speed Networks** (LEC 2.0 and LAB 1.0) A state-of-the-art survey of high-speed networks, modeling and simulation, quality of service (QoS) for multimedia applications and management schemes, TCP congestion control, ATM and Internet traffic management, Internet Service Architecture (ISA), and Internet routing protocols. Prerequisites: Comp Eng 319 and hardware competency for ECE students, Comp Sci 365 for computer science students, or consent of the instructor.

449 **Network-Centric Systems Reliability and Security** (LEC 3.0) This course presents reliability and fault tolerance for network-centric systems, including models, metrics, and analysis techniques. This course also concentrates on security, including technical tools and methods for audit and assessment as well as management and policy issues. Prerequisite: Sys Eng/Comp Eng 419 or Comp Eng 349. (Co-listed with Sys Eng 449)

457 **Markov Decision Processes** (LEC 3.0) Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Mech Eng 447, Aero Eng 457, Eng Mgt 457 and Comp Sci 457)

458 **Adaptive Critic Designs** (LEC 3.0) Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisite: Elec Eng 368 Neural Networks or equivalent (Computational Intelligence Comp Eng 301) (Co-listed with Elec Eng, Mech Eng, Aero Eng and Sys Eng 458)

481 **Philosophy of Scientific Research** (LEC 3.0) Organization and planning of research. Introduction to the philosophy and management of scientific research, particularly issues related to ethics, plagiarism, ownership of intellectual properties, research techniques, technical presentations and time management. The course will address these issues by integrating with case studies. (Co-listed with Chem Eng 425, IDE 425, Civ Eng 485, Env Eng 485, Elec Eng 481)

490 **Special Research And Thesis** (IND 1.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Prerequisite: Consent of the instructor required.

493 **Oral Examination** (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 **Continuous Registration** (IND 1.0) Doctoral candidates who have completed all requirements for the degree except for the dissertation, and are away from the campus, must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Computer Science Courses

300 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

302 **Agile Software Development** (LEC 3.0) Understand principles of agile software development and contrast them with prescriptive processes. Specifically: Eliciting, organizing, and prioritizing requirements; Design processes; Understand how a particular process promotes quality; Estimate costs
Computer Science Courses - 149

and measure project progress and productivity. Prerequisite: Comp Sci 206.

307 Software Testing And Quality Assurance (LEC 3.0) It covers unit testing, subsystem testing, system testing, object-oriented testing, testing specification, test case management, software quality factors and criteria, software quality requirement analysis and specification, software process improvement, and software total quality management. Prerequisite: Cmp Sc 253.

308 Object-Oriented Analysis And Design (LEC 3.0) This course will explore principles, mechanisms, and methodologies in object-oriented analysis and design. An object-oriented programming language will be used as the vehicle for the exploration. Prerequisite: Cmp Sc 253.

310 Seminar (IND 0.0-6.0) Discussion of current topics. Prerequisite: Senior standing.

311 Bioinformatics (LEC 3.0) The course will familiarize students with the application of computational methods to biology, as viewed from both perspectives. It will introduce problems in molecular, structural, morphological, and biodiversity informatics, and will discuss principles, algorithms, and software to address them. Prerequisites: Bio Sci 110 or 111 and Comp Sci 53/54 or 74/78. (Co-listed with Bio Sci 311)

317 Intellectual Property For Computer Scientists (LEC 3.0) A presentation of the relationship between the law of intellectual property and computer science. Topics include the application of copyright principles to computer programs, protection of computer programs through patents and trade secret law, and the effect of various agreements which are frequently encountered by the computer scientist. Prerequisite: Senior or graduate standing.

325 Analysis Of Algorithms (LEC 3.0) The purpose of this course is to teach the techniques needed to analyze algorithms. The focus of the presentation is on the practical application of these techniques to such as sorting, backtracking, and graph algorithms. Prerequisite: Cmp Sc 253.

328 Object-Oriented Numerical Modeling I (LEC 3.0) A study of object-oriented modeling of the scientific domain. Techniques and methodologies will be developed enabling the student to build a class library of reusable software appropriate for scientific application. Applications will be drawn from mechanics, finance, and engineering. Prerequisites: Comp Sci 228 and Comp Sci 153 and one of Math 208, 203, 229.

329 Object-Oriented Numerical Modeling II (LEC 3.0) A continued study of object-oriented modeling of the scientific domain. Advanced applications include models posed as balance laws, integral equations, and stochastic simulations. Prerequisite: Cmp Sc 328.

338 Database Systems (LEC 3.0) This course introduces the advanced database concepts of normalization and functional dependencies, transaction models, concurrency and locking, timestamping, serializability, recovery techniques, and query planning and optimization. Students will participate in programming projects. The course assumes students have an introductory course in database systems. Prerequisites: Comp Sci 128 and Comp Sci 238.

345 Introduction to Robotics (LEC 3.0) This course provides an introduction to robotics, covering robot hardware, fundamental kinematics, trajectories, differential motion, robotic decision making, and an overview of current topics in robotics. Prerequisite: A "C" or better in both Math 208 and Comp Sci 153. (Co-listed with Comp Eng 388 and Elec Eng 388)

347 Introduction To Artificial Intelligence (LEC 3.0) A modern introduction to AI, covering important topics of current interest such as search algorithms, heuristics, game trees, knowledge representation, reasoning, computational intelligence, and machine learning. Students will implement course concepts covering selected AI topics. Prerequisite: Cmp Sc 253.

348 Evolutionary Computing (LEC 3.0) Introduces evolutionary algorithms, a class of stochastic, population-based algorithms inspired by natural evolution theory (e.g., genetic algorithms), capable of solving complex problems for which other techniques fail. Students will implement course concepts, tackling science, engineering and/or business problems. Prerequisites: Comp Sci 253 and a statistics course.

353 Multimedia Systems (LEC 3.0) This course introduces the concepts and components of Multimedia information systems. Topics include: Introduction to Multimedia Data, Multimedia Date Compression, Techniques and Standards, Indexing and Retrieval, Data Storage Organization, Communication and Synchronization, Applications-Media-OnDemand Systems, Video Conferencing, Digital Libraries. Prerequisite: Cmp Sc 153.

354 Mathematical Logic I (LEC 3.0) A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 15 with junior standing or Math 305 or Comp Sci 253 or Comp Eng 111. (Co-listed with Math 354, Philos 354 and Comp Eng 354.)

354 Mathematical Logic I (LEC 3.0) A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems,
356 **The Structure of a Compiler** (LEC 3.0) Review of Backus normal form language descriptors and basic parsing concepts. Polish and matrix notation as intermediate forms, and target code representation. Introduction to the basic building blocks of a compiler: syntax scanning, expression translation, symbol table manipulation, code generation, local optimization, and storage allocation. Prerequisites: Comp Sci 256 and Comp Sci 253.

358 **Interactive Computer Graphics** (LEC 3.0) Applications and functional capabilities of current computer graphics systems. Interactive graphics programming including windowing, clipping, segmentation, mathematical modeling, two and three dimensional transformations, data structures, perspective views, antialiasing and software design. Prerequisites: Cmp Sc 228 and 253.

362 **Security Operations & Program Management** (LEC 3.0) An overview of information security operations, access control, risk management, systems and application life cycle management, physical security, business continuity planning, telecommunications security, disaster recovery, software piracy, investigations, ethics and more. There will be extensive reporting, planning and policy writing. Prerequisite: Writing emphasized course AND Operating System course AND Computer Networking course.

365 **Computer Communications And Networks** (LEC 3.0) Network architecture model including physical protocols for data transmission and error detection/correction, data link concepts, LAN protocols, internetworking, reliable end to end service, security, and application services. Students will implement course concepts on an actual computer network. Prerequisite: Comp Sci 284.

366 **Regression Analysis** (LEC 3.0) Simple linear regression, multiple regression, regression diagnostics, multicollinearity, measures of influence and leverage, model selection techniques, polynomial models, regression with autocorrelated errors, introduction to non-linear regression. Prerequisites: Math 22 and one of Stat 211, 213, 215, 217, or 343. (Co-listed with Stat 346)

381 **The Structure Of Operating Systems** (LEC 3.0) The hardware and software requirements for operating systems for uniprogramming, multiprogramming, multiprocessing, time sharing, real time and virtual systems. The concepts of supervisors, interrupt handlers, input/output control systems, and memory mapping are discussed in detail. Prerequisite: Cmp Sc 284.

384 **Distributed Operating Systems** (LEC 3.0) This is a study of modern operating systems, particularly distributed operating systems. Topics include a review of network systems and interprocess communication, causality, distributed state maintenance, failure detection, reconfiguration and recovery, load balancing, distributed file systems, distributed mutual exclusion, and stable property detection including deadlock detection. A group project in Distributed Systems programming will be required. Prerequisites: Cmp Sc 284 and 253.

387 **Introduction to Parallel Programming and Algorithms** (LEC 3.0) Parallel and pipelined algorithms, architectures, network topologies, message passing, process scheduling and synchronization. Parallel programming on clusters. Cost, speedup and efficiency analysis. Prerequisites: Comp Sci 284 and Comp Sci 253.

388 **Introduction to High Performance Computer Architecture** (LEC 3.0) Overviews high performance architecture of computing systems and covers various architectural/hardware and software/algorithmic means that enhance performance. Uniprocessor and concurrent systems are investigated. Various computational models are studied and linked to commercial systems. Prerequisites: Comp Eng 213, Comp Sci 253.

390 **Undergraduate Research** (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Does not lead to the preparation of a thesis. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the faculty supervisor.

397 **Software Systems Development I** (LEC 3.0) Class members will work in small teams to develop a complete software system beginning with end-user interviews and concluding with end-user training. Prerequisites: Comp Sci 206 and 100 credit hours completed.

398 **Software Systems Development II** (LEC 3.0) This course is an optional continuation of Cmp Sc 397. Those interested in project management should take this course since participants become officers or group leaders in the class "corporation." This course is especially important for those going straight into industry upon graduation. Students with co-op experience may find this course redundant. Prerequisite: Cmp Sc 397.

400 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

406 **Software Engineering II** (LEC 3.0) A quantitative approach to measuring costs/productivity in software projects. The material covered will be software metrics used in the life cycle and the student will present topical material. Prerequisite: Cmp Sc 206.

409 **Software Requirements Engineering** (LEC 3.0) This course will cover advanced methods, processes, and technique for discovering, analyzing, specifying and managing software requirements of a software system from multiple perspectives. It will discuss
both functional and non-functional requirements analysis. Prerequisite: Comp Sci 206.

410 Seminar (RSD 1.0) Discussion of current topics.

417 Network Performance Analysis (LEC 3.0) Provides an introduction to performance modeling and analysis of computer networks. Topics include stochastic processes; performance measurement and monitoring; quantitative models for network performance, e.g., Markovian models for queues; simulation; and statistical analysis of experiments. Prerequisites: Comp Eng 319 or Comp Sci 365; Stat 217 or 343. (Co-listed with Comp Eng 417)

425 Algorithmics II (LEC 3.0) Covers selected classical and recent developments in the design and analysis of algorithms, such as sophisticated data structures, amortized complexity, advanced graph theory, and network flow techniques. Prerequisite: Comp Sci 325.

426 Theory Of Computation (LEC 3.0) Turing machines and other machines. Gödel numbering and unsolvability results. Machines with restricted memory access and limited computing time. Recursive functions, computable functionals and the classification of unsolvable problems. Prerequisite: Comp Sci 220.

434 Data Mining & Knowledge Discovery (LEC 3.0) Data mining and knowledge discovery utilizes both classical and new algorithms, such as machine learning and neural networks, to discover previously unknown relationships in data. Key data mining issues to be addressed include knowledge representation and knowledge acquisition (automated learning). Prerequisites: (Comp Sci 338 or Comp Sci 347) and Stat 215. (Co-listed with Comp Eng 404 and Sys Eng 404)

437 Web Data Management and XML (LEC 3.0) Management of semi-structured data models and XML, query languages such as Xquery, XML indexing, and mapping of XML data to other data models and vice-versa, XML views and schema management, advanced topics include change-detection, web mining and security of XML data. Prerequisite: Comp Sci 338.

438 Heterogeneous and Mobile Databases (LEC 3.0) This course extensively discusses multidatabase systems (MDBS) and mobile data access systems (MDAS). Moreover, it will study traditional distributed database issues within the framework of MDBSS and MDASs. Prerequisite: Comp Sci 338 or graduate standing.

439 Object-Oriented Database Systems (LEC 3.0) This course will include a study of the origins of object-oriented database manipulation languages, their evolution, currently available systems, application to the management of data, problem solving using the technology, and future directions. Prerequisites: Cmp Sc 308 and Database Systems.

447 Advanced Topics In Artificial Intelligence (LEC 3.0) Advanced topics of current interest in the field of artificial intelligence. This course involves reading seminal and state-of-the-art papers as well as conducting topical research projects including design, implementation, experimentation, analysis, and written and oral reporting components. Prerequisite: Comp Sci 347 or Comp Sci 348 or Comp Eng 358.

448 Advanced Evolutionary Computing (LEC 3.0) Advanced topics in evolutionary algorithms, a class of stochastic, population-based algorithms inspired by natural evolution theory, capable of solving complex problems for which other techniques fail. Students will conduct challenging research projects involving advanced concept implementation, empirical studies, statistical analysis, and paper writing. Prerequisite: Comp Sci 348.

449 Clustering Algorithms (LEC 3.0) An introduction to cluster analysis and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student’s degree program. (Co-listed with Comp Eng 439, Elec Eng 439, Sys Eng 439 and Stat 439)

456 Theory Of Compiling (LEC 3.0) Properties of formal grammars and languages, language-preserving transformations, syntax-directed parsing, classes of parsing methods and the grammars for which they are suited, control flow analysis, and the theoretical framework of local and global program optimization methods. Prerequisite: Comp Sci 356.

457 Markov Decision Processes (LEC 3.0) Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Comp Eng 447, Mech Eng 447, Aero Eng 457 and Eng Mgt 457)

458 Computer Graphics And Realistic Modeling (LEC 3.0) Algorithms, data structures, software design and strategies used to achieve realism in computer graphics of three-dimensional objects. Application of color, shading, texturing, antialiasing, solid modeling, hidden surface removal and image processing techniques. Prerequisite: Comp Sci 358.

461 Privacy Preserving Data Integration and Analysis (LEC 3.0) This course covers basic tools, in statistics and cryptography, commonly used to design privacy-preserving and secure protocols in a distributed environment as well as recent advances in the field of privacy-preserving data analysis, data sanitization and information retrieval. Prerequisite: Comp Sci 325 and either Stat 343 or both a 200 or higher level Stat course and instructor approval.

463 Computer Security (LEC 3.0) The course presents various vulnerabilities and threats to information in cyberspace and the principles and techniques for preventing and detecting threats, and recovering from attacks. The course deals with various aspects

465 Advanced Topics in Wireless Networks (LEC 3.0) Introduces the fundamentals and recent advances in wireless networking. Coverage includes cellular networks, wireless and mobile ad hoc networks, wireless mesh networks, sensor networks and wireless LANs with a focus on network operation. Special topics selected from the literature on wireless network security will also be addressed. Prerequisite: Comp Sci 365 or equivalent.

467 Mobile And Sensor Data Management (LEC 3.0) Architectures of mobile computing systems; Mobile-IP support in mobile computing systems; location data management, Broadcasting and indexing, replication control; caching, fault tolerance and reliability of mobile systems; adhoc and sensor routing schemes, key management. Prerequisite: Comp Sci 265.

468 Advanced Network Security (LEC 3.0) Topics covered include network security issues such as authentication, anonymity, traceback, denial of service, confidentiality, forensics, etc. In wired and wireless networks. Students will have a clear, in-depth understanding of state of the art network security attacks and defenses. Prerequisite: Comp Sci 325 or equivalent.

484 Distributed Systems Theory And Analysis (LEC 3.0) Analysis of the problems of state maintenance and correctness in concurrent computing systems using formal methods such as Hoare Logic, Temporal Logic, and Symbolic Model Checking. Prerequisite: Comp Sci 384.

487 Topics in Parallel and Distributed Computing (LEC 3.0) Introduction of parallel and distributed computing fundamentals and advanced research topics. Students present research papers selected from the current literature on P&D computing paradigms. A term paper and oral presentation are required. Prerequisite: Comp Sci 387 or equivalent background.

490 Research (IND 0.0-16.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Electrical Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Extra High Voltage Engineering (LEC 2.0 and LAB 1.0) The physical phenomena associated with high voltage dielectric breakdown are presented. Methods of generating and measuring high voltages and currents are explained. Demonstration of design and performance. Field trips to companies for laboratory testing of high voltage according to industry standards will serve as the lab part of the course. Prerequisite: Senior standing.

304 Electric Power Quality (LEC 3.0) Definitions of power quality, types of power quality problems; sources of sags, transient overvoltages and harmonics; distribution overcurrent protection methods and their effect on power quality and reliability; harmonic analysis, principles of controlling harmonics, devices for filtering harmonics; power quality improvement methods. Prerequisite: Elec Eng 205 and Elec Eng 207.

305 Electric Drive Systems (LEC 3.0) Course content is roughly 1/3 power electronics, 1/3 applied control and 1/3 electric machinery and focuses on analysis, simulation, and control design of electric drive based speed, torque, and position control systems. Prerequisites: El Eng 205 and El Eng 231.

307 Power Systems Engineering (LEC 3.0) Network analysis applied to power systems; the load flow concept; economic operation of power systems; synchronous machine reactances and transient stability; symmetrical components and asymmetrical faults; protective relaying. Prerequisite: El Eng 207.

309 Electric-Drive Vehicles (LEC 3.0) Course covers introductory topics related to understanding/analysis of electric, hybrid/plug-in hybrid power trains. Classification of hybrid drivetrains, driving cycles, energy storage systems, mechanical coupling devices, automotive applications of fuel cells and introduction to power converters. Prerequisite: Senior standing and Physics 24.

323 Classical Optics (LEC 3.0) Physical optics and advanced topics in geometrical optics. Topics include ray propagation, electromagnetic propagation, mirrors, lenses, interference, diffraction, polarization, imaging systems, and guided waves. Prerequisites: Math 22 and Physics 24 or 25. (Co-listed with Physics 323)

324 Fourier Optics (LEC 3.0) Applications of Fourier analysis and linear systems theory to optics. Topics include scalar diffraction theory, Fourier transforming properties of lenses, optical information processing,
325 Optical Computing (LEC 3.0) Introduction to the principles, subsystems, and architectures of optical computing. Topics include characteristics of optical devices; optical implementations of memory, logic elements, and processors; and computational structures. Prerequisite: Comp Eng 111 or equivalent. (Co-listed with Comp Eng 325)

326 Fiber And Integrated Optics (LEC 3.0) Introduction to optical waveguides and their applications to communication and sensing. Topics include dielectric waveguide theory, optical fiber characteristics, integrated optic circuits, coupled-mode theory, optical communication systems, and photonic sensors. Prerequisite: Elec Eng 271 or Physics 321. (Co-listed with Physics 326)

329 Smart Materials And Sensors (LEC 2.0 and LAB 1.0) Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multidisciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior standing and Math 204. (Co-listed with Aero Eng 329, Mech Eng 329 and Civ Eng 318)

331 Digital Control (LEC 3.0) Analysis and design of digital control systems. Review of z-transforms; root locus and frequency response methods; state space analysis and design techniques; controllability, observability and estimation. Examination of digital control algorithms. Prerequisite: Elec Eng 231.

332 Plantwide Process Control (LEC 3.0) Synthesis of control schemes for continuous and batch chemical plants from concept to implementation. Multiloop control, RGA, SVD, constraint control, multivariable model predictive control, control sequence descriptions. Design project involving a moderately complicated multivariable control problem. Prerequisites: Chem Eng 251, Elec Eng 231, Elec Eng 235 or graduate standing. (Co-listed with Ch Eng 359)

335 Advanced Plc (LEC 2.0 and LAB 1.0) Advanced programmable logic controller (PLC) programming, function block, structured text, function chart, sequencer. Factory communications, system simulation, human-machine interface (HMI) programming. Advanced PID control. Network security and reliability. Class-wide project. Prerequisite: Elec Eng 235.

337 Neural Networks For Control (LEC 3.0) Introduction to artificial neural networks and various supervised and unsupervised learning techniques. Detailed analysis of some of the neural networks that are used in control and identification of dynamical systems. Applications of neural networks in the area of Control. Case studies and a term project. Prerequisite: Elec Eng 265.

338 Fuzzy Logic Control (LEC 3.0) A mathematical introduction to the analysis, synthesis, and design of control systems using fuzzy sets and fuzzy logic. A study of the fundamentals of fuzzy sets, operations on these sets, and their geometrical interpretations. Methodologies to design fuzzy models and feedback controllers for dynamical systems. Various applications and case studies. Prerequisite: Elec Eng 265.

343 Communications Systems II (LEC 3.0) Random signals and their characterization; noise performance of amplitude, angle and pulse modulation systems; digital data transmission; use of coding for error control. Prerequisite: Elec Eng 243.

344 Stochastic Signal Analysis I (LEC 3.0) Introduction to the application of probabilistic models to typical electrical engineering problems. Topics include: methods for describing random voltages, random digital signals, correlation, linear mean-square estimation, linear transformation of random digital signals, and bit-error rate calculation for communication systems. Prerequisites: Math 204 and Elec Eng 153.

345 Digital Image Processing (LEC 3.0) Fundamentals of human perception, sampling and quantization, image transforms, enhancement, restoration, channel and source coding. Prerequisite: Elec Eng 267. (Co-listed with Cp Eng 345)

347 Machine Vision (LEC 3.0) Image information, image filtering, template matching, histogram transformations, edge detection, boundary detection, region growing and pattern recognition. Complementary laboratory exercises are required. Prerequisites: Comp Eng 111 and preceded or accompanied by Elec Eng 267. (Co-listed with Comp Eng 347)

348 Wireless Networks (LEC 2.0 and LAB 1.0) Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols, wireless LAN, IEEE 802.11, and adhoc and sensor networks. Prerequisites: Hardware competency, Elec Eng 243 or Comp Eng 213 and graduate standing. (Co-listed with Comp Eng 348 and Sys Eng 348)
Introduction to Neural Networks & Applications (LEC 3.0) Introduction to artificial neural network architectures, adaline, madaline, back propagation, BAM, and Hopfield memory, counter propagation networks, self-organizing maps, adaptive resonance theory, are the topics covered. Students experiment with the use of artificial neural networks in engineering through semester projects. Prerequisite: Math 229 or Math 204 or equivalent. (Co-listed with Sys Eng 378)

Interference Control in Electronic Systems (LEC 3.0) Principles of high frequency effects in PCBs and components, generation of unwanted radio-frequency (RF) signals by ICs, RF radiation mechanisms, shielding, and immunity against electrostatic discharge and RF signals. Prerequisites: Elec Eng 217 and 271.

Signal Integrity In High-Speed Digital & Mixed Signal Design (LEC 3.0) Signal integrity ensures signals transmitted over a propagation path maintain sufficient fidelity for proper receiver operation. Compromised signal integrity is often associated with parasitics (e.g. unintentional inductance, capacitance). Theory and CAD tools used for signal integrity analysis of functioning designs. Prerequisites: El Eng 271 and 217.

Antennas And Propagation (LEC 3.0) Propagated fields of elemental dipole, directivity and gain, radiation resistance, the half-wave dipole, wire antennas, arrays, broadband antennas, aperture antennas, horn antennas, and antenna temperature. Prerequisite: El Eng 271.

Wave Propagation and Transmission Lines (LEC 3.0) The materials in this course are intended to provide a) follow up electromagnetics related courses, b) electromagnetics related career including RF design and c) a graduate degree in electromagnetic related fields an in-depth understanding of the basics of wave propagation and transmission lines. Prerequisite: Elec Eng 271.

Nondestructive Testing (LEC 3.0) Principles and applications of various means of non-destructive testing of metallic materials. Radiological inspection methods, ultrasonic testing, magnetic methods, electrical and eddy current methods and others. Prerequisite: Physics 24 or 25. (Co-listed with Met Eng 305)

Microwave And Millimeter Wave Engineering And Design (LEC 3.0) Introduce senior and graduate students to the concept of microwave an millimeter wave engineering and component design such as waveguide, couplers, detectors, mixers, etc., including network theory and scattering matrix.
Finally, their application in various microwave circuits will be discussed. Prerequisites: El Eng 253, 271.

378 **Mechatronics** (LEC 2.0 and LAB 1.0) This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 279 or equivalent. (Co-listed with Mech Eng 378, Aero Eng 378 and Comp Eng 378)

379 **Microwave Principles For Mixed-Signal Design** (LEC 3.0) Transmission lines; coupled transmission lines; microwave network analysis; impedance matching and tuning; design of microwave amplifiers and oscillators. Prerequisite: El Eng 271.

382 **Teaching Engineering** (LEC 3.0) Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mg 370, Env En 382, Cp Eng 382, Cv Eng 382)

388 **Introduction to Robotics** (LEC 3.0) This course provides an introduction to robotics, covering robot hardware, fundamental kinematics, trajectories, differential motion, robotic decision making, and an overview of current topics in robotics. Prerequisite: A "C" or better in both Math 208 and Comp Sci 153. (Co-listed with Comp Sci 345 and Comp Eng 388)

390 **Undergraduate Research** (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

391 **Electrical Engineering Senior Project I** (RSD 0.5 and LAB 0.5) A complete design cycle. Working in small teams, students will design, document, analyze, implement and test a product. Topics include: Iteration in design, prototyping, group dynamics, design reviews, making effective presentations, concurrent design, designing for test, ethics and standards, testing and evaluation. Prerequisites: Stat 217, Comp Eng 111, Econ 121 or 122, Sp&MS 85, English 160, at least 3 of the following: Elec Eng 205, Elec Eng 207, Elec Eng 215, Elec Eng 217, Elec Eng 271, Elec Eng 253.

392 **Electrical Engineering Senior Project II** (LAB 3.0) A continuation of El Eng 391. Prerequisite: El Eng 391.

400 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

402 **Advanced Theory Of Electric Machines** (LEC 3.0) Energy conversion, reference frame theory, transient and dynamic modeling of ac machines, simulation of ac machines, parameter identification, model-order reduction, advanced topics depending on semester taught. Prerequisite: El Eng 205.

404 **Power System Operations** (LEC 3.0) Optimal dispatch operations, economic loading of power plants, mathematical optimization, locational marginal pricing, optimal power flow; effect of hydro and wind power plants on system economics; contingency analysis and system security, state estimation. Prerequisite: Elec Eng 307.

405 **Power System Protection** (LEC 3.0) Protective relaying incorporating electromechanical, solid state and computer relaying methods for high voltage transmission systems; instrument transformers; generator, transformer, line and bus protection; effect of system grounding; pilot protection and out of step relay principles. Prerequisite: Elec Eng 303 and 307.

406 **Power System Stability** (LEC 3.0) Synchronous machine theory and modelling; AC transmission; power system loads; excitation systems; control of active and reactive power; small signal stability; transient stability; voltage stability; mid-term and long-term stability; subsynchronous oscillations; stability improvement. Prerequisite: El Eng 207 or similar course.

407 **Surge Phenomena In Power Systems** (LEC 3.0) Study of transmission system insulation, distributed constant lines, terminations, multiple reflections, lighting performance, characteristics of sustained and switching overvoltages, surge voltages due to system faults, energizing and reclosing of circuit breakers. Methods of reducing overvoltages to acceptable levels. Prerequisite: El Eng 307.

408 **Computer Methods In Power System Analysis** (LEC 3.0) Algorithms for large scale system solution, non-linear systems, ordinary differential equations, eigenvalue problems, modal information, and optimization. Applications to power systems analysis. Prerequisite: Elec Eng 207 or similar course.

409 **Advanced Electric Drive Vehicles** (LEC 3.0) This course covers an entire range of advanced topics related to the analysis, design, control, simulation, and optimization of electric, hybrid, and plug-in hybrid power-trains including the automotive applications of adjustable speed motor drives, energy storage systems, and advanced power converters. Prerequisite: Elec Eng 305 or Elec Eng 353.

420 **Semiconductor Devices** (LEC 3.0) Properties of semiconductors, junctions and transistors; high frequency and high-current effects; recombination processes; field-effect devices, semiconductor devices and microcircuits. Prerequisite: Graduate status in El Eng.
422 Integrated Microsystems Engineering (LEC 1.5 and LAB 1.5) Theory and practice of multidisciplinary integrated microsystem technologies. The topics include (1) micromachining technology, (2) review of mechanical, optical, microfluidic and (bio) chemical microsensors and microactuators, (3) hands-on lab session for design, fabrication, and characterization of microsystems. Prerequisite: Graduate standing.

425 Electromagnetic Optics (LEC 3.0) Propagation, control, and modulation of laser radiation. Topics include optical polarization, interference, layered and anisotropic media, electro-optic devices, acousto-optic devices, and nonlinear optics. Prerequisite: Elec Eng 271 or Physics 321.

429 Advanced Topics in Optics and Devices (LEC 3.0) Advanced topics of current interest in optics and devices. Selected topics include semiconductor materials, electronic devices, wave-based sensing, fiber optic systems, optoelectronics, and photonic engineering. Prerequisite: Graduate Standing.

431 Linear Control Systems (LEC 3.0) Review of linear algebra, state variable formulations, solutions of state equations; controllability and observability; multivariable systems, matrix-fraction decompositions; design of state and output feedback controllers and observers; introduction to calculus of variations; linear quadratic regulators. Prerequisite: Elec Eng 231.

432 Optimal Control And Estimation (LEC 3.0) Review of linear quadratic regulators (LQR), LQR extensions; constrained optimization (Pontryagin's minimum principle); review of probability theory and random processes; optimal prediction and filters; frequency domain properties of LQR and Kalman filters; linear quadratic Gaussian (LQG) control; model uncertainties, frequency shaping, LQG/LTR design methodology. Prerequisite: Elec Eng 431.

433 Current Topics In Control Theory (LEC 3.0) Topics of current interest in control theory literature. Offered as interest and demand warrant. Prerequisite: Consent of instructor.

434 Nonlinear Control Systems (LEC 3.0) Numerical solution methods, describing function analysis, direct and indirect methods of Lyapunov stability, applications to the Lure problem - Popov circle criterion. Applications to system design and feedback linearizations. Prerequisite: Elec Eng 431.

438 Robust Control Systems (LEC 3.0) Performance and robustness of multivariable systems, linear fractional transformations, LQG/LTR advanced loop shaping, Youla parameterization, H (subscript infinity) optimal control, mixed H (subscript 2) and H (subscript infinity) control, controller synthesis for multiple objective optimal control, linear matrix inequalities theory and case studies. Prerequisite: Elec Eng 431.

439 Clustering Algorithms (LEC 3.0) An introduction to cluster analysis and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student's degree program. (Co-listed with Comp Eng 439, Sys Eng 439, Comp Sci 449 and Stat 439)

441 Digital Signal Processing II (LEC 3.0) Continuation of Ele Eng 341. Effects of discrete noise sources in digital signal processing; discrete spectral analysis of random signals; discrete time signal detection, estimation, and filtering algorithms. Prerequisites: Elec Eng 341 and 343 or 344 or Stat 343.

443 Wireless Ad hoc and Sensor Networks (LEC 3.0) Introduction to ad hoc and sensor networks, IEEE standards, heterogeneity, quality of service, wireless channel issues, energy awareness, power and topology control, routing, scheduling, rate adaptation, self-organization, admission and flow control, energy harvesting, security and trust levels, hardware and applications. Prerequisite: Comp Eng 348 or Comp Eng 349 or equivalent. (Co-listed with Comp Eng 443 and Sys Eng 443)

444 Stochastic Signal Analysis II (LEC 3.0) Continuous-time stochastic signals, multidimensional signals, Wiener and matched filters, LMS equalization, non-linear systems with random inputs, spectral estimation and Markov chains. Prerequisites: Stat 343 or Elec Eng 344.

445 Statistical Decision Theory (LEC 3.0) Classical detection and estimation theory with applications; hypothesis testing, detection of known signals, matched filter receiver implementation, detection of signals with unknown parameters, sequential and nonparametric detection, detection of stochastic signals: Parameter estimation theory with application to modulation. Prerequisite: Elec Eng 344.

446 Wireless Communications (LEC 3.0) Introduction to the principle of wireless communication systems. Topics include: wireless channel characteristics, cellular concepts, channel capacity analysis, transceiver architectures, diversity techniques, multiple access schemes, and practical wireless systems. Prerequisite: Elec Eng 343 or Elec Eng 344 or equivalent.

447 Information Theory And Coding (LEC 3.0) Principles of information generation, transmission and processing; quantitative measure of information, entropy source encoding; channels; mutual information; channel capacity; Shannon's second theorem for discrete channels; introduction to coding for error controls; continuous information sources. Prerequisites: Elec Eng 343 or Elec Eng 344 or Stat 343.

448 Advanced Topics In Communications (LEC 3.0) Advanced topics of current interest in communications and signal processing such as spread spectrum, digital processing of communications, speech, and radar signals, applications of pattern recognition, communications networks, specialized coding topics. Repeatable for additional credit toward degree each time a different subtitle offered. Prerequisite: Elec Eng 343 or 344.
453 Advanced Power Electronics (LEC 3.0) The purpose of this course is to cover selected areas of power electronics in greater depth. The topics covered include small signal analysis of power converters, voltage- and current- mode control, soft switching techniques, power factor correctors, multi-level converters, and PWM techniques. Prerequisite: Elec Eng 353.

455 Advanced RF & Time Domain Measurements (LEC 2.0 and LAB 1.0) Advanced measurement techniques and instrumentation: Oscilloscopes (Real time and sampling, A/D conversion errors, Probing, Jitter, Noise), Spectrum analyzer (concepts, applications), Network Analyzer (concepts, calibration), Impedance measurements. Lab experiments are a main part of this class. Prerequisite: Graduate standing.

456 Signal Integrity, High Speed Digital and RF Design Laboratory (LAB 3.0) This is an RF and digital electronics design class. Student groups will design, manufacture and test RF and/or digital circuits during the class. Besides this project work the lecture part will emphasize circuit design, layout, parasitic effects and design for testability. Prerequisite: Elec Eng 271.

458 Adaptive Critic Designs (LEC 3.0) Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisite: Elec Eng 368 Neural Networks or equivalent (Computational Intelligence Comp Eng 301) (Co-listed with Comp Eng, Mech Eng, Aero Eng and Sys Eng 458)

473 Electromagnetic Waves II (LEC 3.0) Circular waveguides, circular cavities, scattering by cylinders, apertures in cylinders, spherical cavities, orthogonality relationships, source of spherical waves, scattering by spheres, perturbational and variational techniques, microwave networks, probes in cavities, and aperture coupling to cavities. Prerequisite: Elec Eng 471.

474 Computational Electromagnetics (LEC 3.0) Differential-equation based numerical methods-finite element, finite-difference, and finite-difference time-domain—for solving static and dynamic equations of electromagnetics. Applications considered are multi-conductor transmission lines, Maxwell's equations for radiation and scattering, and electric machinery. Prerequisite: Elec Eng 271.

475 Topics in EMC and High Speed Digital Design (LEC 3.0) This course will cover advanced topics in electromagnetic compatibility and high speed digital design that are not traditionally covered in other courses. Topics will depend on the latest developments in the field and on student needs. Prerequisite: Elec Eng 271.

477 Advanced Topics in Antenna Analysis and Design (LEC 3.0) Introduction and discussion of advanced antenna design issues including: polarization, antenna synthesis and source modeling, broadband antennas, aperture and microstrip antenna simulation and design, and antenna pattern measurement techniques including near-field to far-field transformation. Prerequisite: Elec Eng 373 or equivalent.

481 Philosophy of Scientific Research (LEC 3.0) Organization and planning of research. Introduction to the philosophy and management of scientific research, particularly issues related to ethics, plagiarism, ownership of intellectual properties, research techniques, technical presentations and time management. The course will address these issues by integrating with case studies. (Co-listed with Chem Eng 425, IDE 425, Civ Eng 485, Env Eng 485, Comp Eng 481)

490 Special Research And Thesis (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

491 Internship (IND 0.0-15.0) Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.
Engineering Management Courses

300 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

308 **Economic Decision Analysis** (LEC 3.0) Comprehensive treatment of engineering economy including effects of taxation and inflation; sensitivity analysis; decisions with risk and uncertainty; decision trees and expected value, normally includes solutions on personal computer and student problem report. Prerequisite: Graduate students without previous course in engineering economy because of partial overlap.

309 **Six Sigma** (LEC 3.0) This course is an introduction to the principles of implementing the Six Sigma philosophy and methodology. Topics include tools and methods including process flow diagrams, cause and effect diagrams, failure mode and effects analysis, gage R&R, capability studies, design of experiments and strategy for organizing six sigma techniques in industry. Prerequisite: Stat 213 or Stat 215 or graduate standing.

311 **Human Factors** (LEC 3.0) An examination of human-machine systems and the characteristics of people that affect system performance. Topics include applied research methods, systems analysis, and the perceptual, cognitive, physical and social strengths and limitations of human beings. The focus is on user-centered design technology, particularly in manufacturing environments. Prerequisite: Psych 50. (Co-listed with Psych 311)

313 **Managerial Decision Making** (LEC 3.0) Individual and group decision making processes and principles for engineers and technical managers with emphasis on the limitations of human rationality and the roles of social influence and organizational contexts; principles and skills of negotiation. Prerequisite: Senior or graduate standing.

314 **Management for Engineers and Scientists** (LEC 3.0) The transition of the engineer or scientist to manager; study of management roles and theory, organizational systems and behavior, managing and motivating technical personnel, leadership, communication, processes, and customer focus. Prerequisite: Graduate standing.

320 **Technical Entrepreneurship** (LEC 3.0) Student teams develop a complete business plan for a company to develop, manufacture and distribute real technical/product service. Lectures & business fundamentals, patents, market/technical forecasting, legal and tax aspects, venture capital, etc., by instructor and successful technical entrepreneurs. Prerequisite: Senior or graduate standing.

327 **Legal Environment** (LEC 3.0) Study of the effect of the legal environment on the decisions which the engineering manager must make. The course investigates the social forces that produced this environment and the responsibilities incumbent upon the engineer.

344 **Interdisciplinary Problems In Manufacturing Automation** (LEC 1.0 and LAB 2.0) Introduction to basic techniques and skills for concurrent engineering, manufacturing strategies, product design, process planning, manufacturing data management and communication are the topics covered. Students experiment the design process through team projects and structured manufacturing laboratory work. (Co-listed with Mc Eng 344, Ch Eng 384)

345 **Energy and Sustainability Management Engineering** (LEC 3.0) This course explores strategic processes and partnership required for the management of sustainable energy infrastructures and innovation in energy systems. Topics relate to renewable energy, energy efficiencies, energy conversion, energy technology, and economic efficiency of energy sources. Prerequisite: Senior or Graduate Standing.

350 **Risk Assessment and Reduction** (LEC 3.0) Safe, secure manufacturing facilities protect the health of employees and the public, preserve the environment, and increase profitability. Methods for systematically identifying hazards and estimating risk improve the safety performance and security of manufacturing facilities. Prerequisite: Senior or Graduate Standing. (Co-listed with Chem Eng 350)

351 **Industrial Marketing Systems Analysis** (LEC 3.0) An analysis of the factors of engineered products, customers, communication, promotion, personal selling, persuasion and management within a dynamic industrial sales environment.

354 **Integrated Product And Process Design** (LEC 3.0) Emphasize design policies of concurrent engineering and teamwork, and documenting of design process knowledge. Integration of various product realization activities covering important aspects of a product life cycle such as "customer" needs analysis, concept generation, concept selection, product modeling, process development, DFX strategies, and end-of-product life options. Prerequisite: Eng Mgt 253 or Mech Eng 253. (Co-listed with Mech Eng 357)

356 **Industrial System Simulation** (LEC 3.0) Simulation modeling of manufacturing and service operations through the use of computer software for operational analysis and decision making. Prerequisite: Stat 213 or 215.

357 **Advanced Facilities Planning & Design** (LEC 2.0 and LAB 1.0) An integrated approach to the planning and design of facilities; examination of advanced techniques and tools for facility location, space allocation, facility layout materials handling system design, work place design; e.g. mathematical programming and simulation modeling. Prerequisite: Eng Mgt 257 or instructor's permission.
358 Integrated Product Development (LEC 1.0 and LAB 2.0) Students in design teams will simulate the industrial concurrent engineering development process. Areas covered will be design, manufacturing, assembly, process quality, cost, supply chain management, and product support. Students will produce a final engineering product at the end of the project. Prerequisite: Eng Mgt 354 or Mech Eng 357 or Mech Eng 253 or Mech Eng 308. (Co-listed with Mech Eng 358)

361 Project Management (LEC 3.0) Organization structure and staffing; motivation, authority and influence; conflict management; project planning; network systems; pricing, estimating, and cost control; proposal preparation; project information systems; international project management. Prerequisite: Graduate Standing.

364 Value Analysis (LEC 3.0) An organized effort at analyzing the function of goods or services for the purpose of achieving the basic functions at the lowest overall cost, consistent with achieving the essential characteristics. Covers the basic philosophy, function analysis, FAST diagramming, creativity techniques, evaluation of alternatives, criteria analysis, and value stream mapping. Prerequisite: Senior or graduate standing.

365 Operations Management Science (LEC 3.0) Application of management science with an emphasis on supporting managerial decision-making. Design and operations of systems are modeled and analyzed using quantitative and qualitative techniques implemented using modern technology. Specific approaches include mathematical modeling and optimization, probabilistic/statistical analysis, and simulation. Prerequisite: Eng Mgt 253 with at least a "C" or graduate standing.

366 Business Logistics Systems Analysis (LEC 3.0) An analysis of logistics function as a total system including inventory, transportation, order processing, warehousing, material handling, location of facilities, customer service, and packaging with trade-off and interaction. Prerequisite: Stat 213 or 215.

369 Patent Law (LEC 3.0) A presentation of the relationship between patent law and technology for students involved with developing and protecting new technology or pursuing a career in patent law. Course includes an intense study of patentability and preparation and prosecution of patent applications. Prerequisite: Senior or graduate standing. (Co-listed with Chem Eng 385)

370 Teaching Engineering (LEC 3.0) Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Env En 382, Cp Eng 382, El Eng 382, Cv Eng 382)

372 Production Planning And Scheduling (LEC 3.0) Introduction to basic techniques of scheduling, manufacturing planning and control, just-in-time systems, capacity management, master production scheduling, single machine processing, constructive Algorithms for flow-shops, scheduling heuristics, intelligent scheduling systems are the topics covered. Prerequisite: Eng Mg 282.

373 Intelligent Investing (LEC 3.0) In this course we examine methods and tools, which support building a personal portfolio that leads to long-term wealth for the owner. The approach is based on the teachings of Benjamin Graham and Warren Buffet.

374 Engineering Design Optimization (LEC 3.0) This course is an introduction to the theory and practice of optimal design as an element of the engineering design process. The use of optimization as a tool in the various stages of product realization and management of engineering and manufacturing activities is stressed. The course stresses the application of nonlinear programming methods. Prerequisite: Math 204 or 229.

375 Total Quality Management (LEC 3.0) Examination of various quality assurance concepts and their integration into a comprehensive quality management system: statistical techniques, FMEA’s, design reviews, reliability, vendor qualification, quality audits, customer relations, information systems, organizational relationships, motivation. Prerequisite: Senior or graduate standing.

376 Introduction To Quality Engineering (LEC 3.0) This course is an introduction to the theory and practice of quality engineering with particular emphasis on the work of Genichi Taguchi. The application of the quality loss function, signal to noise ratio and orthogonal arrays is considered in-depth for generic technology development; system, product and tolerance design; and manufacturing process design. The emphasis of the course is off-line quality control. Other contributions in the field are also considered. Prerequisite: Eng Mg 375.

377 Introduction To Intelligent Systems (LEC 3.0) Introduction to the design of intelligent systems. Topics include: definitions of intelligence, rule-based expert systems, uncertainty management, fuzzy logic, fuzzy expert systems, artificial neural networks, genetic algorithms and evolutionary computation, hybrid systems, and data mining. Prerequisite: Graduate or senior standing.

381 Management And Methods In Reliability (LEC 3.0) Study of basic concepts in reliability as they apply to the efficient operation of industrial systems. Prerequisite: Stat 213 or 215 or 343.

382 Introduction To Operations Research (LEC 3.0) Mathematical methods for modeling and analyzing industrial systems, topics including linear programming, transportation models, and network models. Prerequisite: Stat 213 or 215.

383 Packaging Management (LEC 3.0) Provides a comprehensive background in the field of packaging and its place in productive systems. Emphasizes the
design or economics of the system. Analyzes the management of the packaging function and interrelationship with other functions of an enterprise.

385 **Statistical Process Control** (LEC 3.0) The theoretical basis of statistical process control procedures is studied. Quantitative aspects of SPC implementation are introduced in context along with a review of Deming’s principles of quality improvement and a brief introduction to sampling inspection Prerequisite: Stat 213 or 215.

386 **Safety Engineering Management** (LEC 3.0) This course is an introduction to the principles of safety engineering applied to industrial situations. Job safety analysis, reduction of accident rates, protective equipment, safety rules and regulations, environmental hazards, health hazards, and ergonomic hazards are covered. Prerequisite: Senior or graduate standing.

390 **Undergraduate Research** (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor. Consent of instructor required.

400 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

408 **Financial Risk Management** (LEC 3.0) Techniques and methods for managing financial risk, including portfolio theory, Monte Carlo methods, ARIMA, time series forecasting, Value-at-Risk, stress testing, extreme value theory, GARCH and volatility estimation, random variables and probability distributions, real options, decision trees, utility theory, statistical decision techniques, and game theory. Prerequisites: Eng Mgt 308, 352, or equivalent. (Co-listed with Sys Eng 408)

409 **Design for Six Sigma** (LEC 3.0) Principles of Design for Six Sigma for product development. Topics include tools and methods including quality function deployment, concept generation, concept selection, product modeling, process development, DFX strategies, failure mode and effects analysis, design of experiments, TRIZ, and robust design. Prerequisite: Eng Mgt 309.

410 **Seminar** (IND 0.0-6.0) Discussion of current topics.

411 **Human Systems Integration** (LEC 3.0) This course considers Human Systems Integration (HSI) in a variety of applications including systems acquisition and training, HSI tools, techniques, and procedures. Prerequisite: Eng Mgt 311 or Psych 311.

418 **Leadership for Engineers** (LEC 3.0) Provides engineers with a background in leadership concepts and principles; enables students to develop practical skills in leading and managing through multiple personal assessment. Topics include leadership styles, managing commitments, conflict resolution, change management, emotional intelligence, team dynamics and business ethics. Prerequisite: Eng Mgt 313 or Psych 374. (Co-listed with Psych 418)

420 **Technological Innovation Management** (LEC 3.0) Technological innovation is new technology creating new products and services. This course studies the issues of managing technological innovation under four topics: 1) Innovation; 2) New Ventures; 3) Corporate Research & 4) R&D Infrastructure. Prerequisite: Eng Mgt 314.

434 **Advanced Manufacturing Systems Integration** (LEC 2.0 and LAB 1.0) The integration of new technology and information processing concepts for controlling the manufacturing systems. Advanced topics in computer integrated manufacturing systems, industrial robots, CNC machine tools, programmable controllers, material handling systems, manufacturing planning and control.

441 **Case Studies In General Management** (LEC 3.0) A quantitative study of engineering management problems related to the functioning of the industrial enterprise through case studies. Prerequisite: Preceded or accompanied by an Eng Mgt 400 level course.

451 **Advanced Marketing Management** (LEC 3.0) Study of marketing decision areas in the technically based firm, including product selection and development, marketing research, market development, distribution, advertising, and promotion. Pricing policies including legal aspects and problems in selecting, training and controlling field sales force. Examination of interaction within consumer and industrial marketing environments. Prerequisites: Eng Mgt 314, Econ 122.

452 **Advanced Financial Management** (LEC 3.0) Principles of financial organization and management in the technological enterprise; demands for funds; internal and external supply of funds; budgetary control; reserve and dividends policy. Emphasizes systems approach and problems of engineering design and automation as they influence financial decisions. Prerequisite: Eng Mgt 352.

454 **Advanced Production Management** (LEC 3.0) Examination of responsibilities of production manager in the technological enterprise for providing finished goods to meet the quality, price, quantity and specification needs of the market place. Study of functions of production manager. Quantitative approach to decision making in production management. Prerequisites: Senior or graduate standing and advanced mathematical modeling competence.

456 **Advanced Personnel Management** (LEC 3.0) Current practices of procurement and maintenance of technical personnel in research, development, and design organizations. Adaptation of such personnel to the technological enterprise, current practices in personnel administration, labor management relationships. Prerequisite: Eng Mgt 314.
457 Markov Decision Processes (LEC 3.0) Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Comp Eng 457, Mech Eng 447, Aero Eng 457 and Comp Sci 457)

458 Case Studies in Project Management (LEC 3.0) Includes the main components of the Project Management Institute (PMI) Body of Knowledge; case studies in project management including project implementation, organizational structures, project estimating, project scheduling, project risk management, and conflict management. Prerequisite: Eng Mgt 361 or equivalent.

460 Advanced Topics in Simulation Modeling (LEC 3.0) Design and analysis of distributed systems using discrete-event simulations and synchronization of distributed models. Design and implementation of finite state automata and simulation models as control execution systems. Functioning of real-time, agent-based, and multipass simulations. Prerequisite: Eng Mgt 356 or Graduate standing.

461 Global Project Management (LEC 3.0) In depth and advanced topics in project management including project management methodologies, strategic planning for excellence, project portfolio management, integrated processes, culture, and behavioral excellence; normally includes a hands-on group project. Prerequisite: Eng Mgt 361 or equivalent.

465 Mathematical Programming (LEC 3.0) An introduction to linear optimization and its engineering applications; problem modeling, search-based optimization, the simplex method for solving linear problems, multi-objective optimization, discrete dynamic programming. Applications of optimization in the fields such as transportation, project management, manufacturing and facility location will be discussed. Prerequisites: Stat 213 or equivalent and (Eng Mgt 382 or Math 203 or Math 208) (Co-listed with Math 465)

472 Lean Manufacturing Systems (LEC 3.0) Lean manufacturing is a total enterprise philosophy built on increasing the synergy between humans and technological systems. Use of various concepts such as flow, just-in-time, lead times, inventory turns, standardized work, pull system, value streams, quick changeover, workplace organization, and visual controls are covered to improve system performance. Prerequisites: Graduate standing, and Eng Mgt 372 or equivalent.

475 Quality Engineering (LEC 3.0) This course is an examination of the theory and practice of quality engineering with particular emphasis on the work of Genichi Taguchi. The application of the quality loss function, signal to noise ratio and orthogonal arrays is considered in depth for generic technology development; system, product and tolerance design; and manufacturing process design. The emphasis of the course is off-line quality control. Prerequisites: Eng Mgt 375 and Math 229 or equivalent.

476 Advanced Engineering Management Science (LEC 3.0) Solving of managerial problems utilizing management science techniques. Problems are analyzed, modeled and solved using such techniques as linear, goal, dynamic, programming, simulation, statistical analysis or other non-linear methods. Solutions will involve the use of personal or mainframe computers. A study of the current literature in management science will also be conducted. Prerequisite: Eng Mgt 382 or graduate standing.

477 Tolerance Design (LEC 3.0) This course is an examination of the theory and practice of allowance allocation for high quality and low cost manufacture of mass-produced consumer products, including technology intensive products, such as automobiles, trucks, military and commercial airplanes, computers and consumer electronics. Prerequisite: Eng Mgt 375 or equivalent.

480 Investment (LEC 3.0) An introduction to the theory and practice of investment, including financial markets and instruments, security trading, mutual funds, investment banking, interest rates, risk premiums, the capital asset pricing model, arbitrage pricing theory, market efficiency, bonds and the fixed income market, equity valuation, fundamental and technical analysis. Prerequisites: Eng Mgt 208, 308, 352, or equivalent. (Co-listed with Sys Eng 480)

481 Financial Engineering (LEC 3.0) An introduction to financial engineering, with an emphasis on financial derivatives, including the future markets, the pricing of forwards and futures, forward rate agreements, interest and exchange rate futures, swaps, the options markets, option strategies, the binomial and Black-Scholes models for option valuation, the option Greeks, and volatility smiles. Prerequisites: Eng Mgt 308, Eng Mgt 352; Eng Mgt 480 or Sys Eng 480 or equivalent. (Co-listed with Sys Eng 481)

482 Financial Engineering II (LEC 3.0) This course introduces advanced topics in financial engineering, which includes introduction to Wiener processes, martingales and Ito's lemma; basic numerical methods for options pricing, exotic options; interest rate models; stochastic volatility models and jump-diffusion models; and value-at-risk. Prerequisite: Eng Mgt/Sys Eng 481. (Co-listed with Sys Eng 482)

489 Advanced Research Methodology In Engineering Management (LEC 3.0) An advanced study of research methodology techniques and theories in conducting research activities. The research problems, hypotheses, literature search, data requirements and analyses, interpretation and presentation of results are examined. Prerequisite: Graduate standing.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must
Environmental Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

360 Environmental Law And Regulations (LEC 3.0) This course provides comprehensive coverage of environmental laws and regulations dealing with air, water, wastewater, and other media. The primary focus is permitting, reporting, and compliance protocols. The course topics include U.S. and international legal systems and judicial processes, liability, enforcement, Clean Air Act, Clean Water Act (NPDES) permitting, Safe Drinking Water Act, OSGA, TSCA, RCRA, and CERCLA. Case studies will be emphasized. (Co-listed with Cv Eng 360)

361 Remediation Of Contaminated Groundwater And Soil (LEC 2.0 and LAB 1.0) Course covers current in-situ and ex-situ remediation technologies. Current literature and case studies are utilized to provide the focus for class discussions and projects. Prerequisites: Cv Eng 265, Ge Eng 337 or Graduate Standing. (Co-listed with Cv Eng 361)

362 Public Health Engineering (LEC 3.0) A comprehensive course dealing with the environmental aspects of public health. Prerequisites: Cv Eng 261 with grade of "C" or better. (Co-listed with Cv Eng 362)

363 Solid Waste Management (LEC 3.0) A systematic study of the sources, amounts and characteristics of solid wastes and methods used for their collection, reclamation, and ultimate disposal. Prerequisites: Cv Eng 261 with grade of "C" or better; or graduate standing. (Co-listed with Cv Eng 363)

364 Environmental Systems Modeling (LEC 3.0) Introductory course in modeling environmental systems. Course will focus on contaminant fate and transport in the environment. Models will be developed that will include physical, chemical and biological reactions and processes that impact this fate. Prerequisites: Env En/Cv Eng 261, Env En/Cv Eng 262 and Env En/ Cv Eng 263; or Graduate standing. (Co-listed with Cv Eng 364)

365 Sustainability, Population, Energy, Water, and Materials (LEC 3.0) This course will examine the concepts regarding the continued advancement of humankind while maintaining our ecological niche on earth. Key topics include: population growth, poverty, and impacts of development; energy consumption, sources, storage, conservation and policy; water quality and quantity; materials and building; and policy implications. Prerequisite: Senior or graduate standing. (Co-listed with Civ Eng 365 and Arch Eng 365)

366 Indoor Air Pollution (LEC 3.0) By developing a practical understanding of indoor air pollution sources, physics, chemistry and consequences, students will learn how radon, cigarette smoke, VOCs from furnishings, and so forth affect indoor air quality and apply engineering analyses to specify ventilation rates, choose furnishings and minimize occupant exposure to pollutants. Prerequisite: Civ Eng 261 or Mech Eng 371 or Graduate Status. (Co-listed with Civ Eng 366 and Arch Eng 366)

367 Introduction To Air Pollution (LEC 3.0) Introduction to the field of air pollution dealing with sources, effects, federal legislation, transport and dispersion and principles of engineering control. Prerequisite: Cv Eng 230 or equivalent; or graduate standing. (Co-listed with Cv Eng 367)

368 Air Pollution Control Methods (LEC 3.0) Study of the design principles and application of the state-of-the-art control techniques to gaseous and particulate emissions from fossil fuel combustion, industrial and transportation sources. Prerequisite: Cv Eng 230 or equivalent; or graduate standing. (Co-listed with Cv Eng 368)

369 Environmental Engineering Design (LEC 2.0 and LAB 1.0) Functional design of water and wastewater facilities and other environmental cleanup systems. Prerequisite: Civ Eng 265 or Env Eng 265. (Co-listed with Civ Eng 369)

380 Water Resources And Wastewater Engineering (LEC 3.0) Application of engineering principles to the planning and design of multipurpose projects involving water resources development and wastewater collection/treatment/disposal systems. Latest concepts in engineering analysis are applied to evaluation of alternative solutions. Prerequisites: Cv Eng 233, 235, 265. (Co-listed with Cv Eng 380)

382 Teaching Engineering (LEC 3.0) Introduction to teaching objectives and techniques. Topics include: using course objectives to design a course; communication using traditional and cutting-edge media; textbook selection; assessment of student learning; grading; student learning styles; cooperative/active learning; and student discipline. Prerequisite: Graduate standing. (Co-listed with Eng Mg 370, Cp Eng 382, El Eng 382, Cv Eng 382)
461 Biological Principles in Environmental Engineering (LEC 3.0) The course develops fundamental biological and biochemical principles involved in natural and engineered biological systems. (Co-listed with Civ Eng 461)

462 Physicochemical Operations in Environmental Engineering Systems (LEC 3.0) Course covers physicochemical operations and design in water, wastewater and aqueous hazardous waste treatment systems including coagulation, precipitation, sedimentation, filtration, gas transfer, chemical oxidation and disinfection, adsorption, ion exchange. Prerequisite: Civ Eng 230 or equivalent. (Co-listed with Civ Eng 462 and Chem Eng 470)

463 Biological Operations in Environmental Engineering Systems (LEC 3.0) Course covers biological operations and design in water, wastewater and aqueous hazardous waste treatment systems including modeling of biological treatment processes; and design of activated sludge systems, trickling filters, rotating biological contractors, lagoons, nitrification and denitrification, and digestion process. Prerequisite: Civ Eng 230 or equivalent. (Co-listed with Civ Eng 463)

464 Industrial And Hazardous Waste Treatment (LEC 2.0 and LAB 1.0) Course covers fundamentals of industrial and hazardous wastewater treatment systems and characterization including physical, chemical and biological processes and laboratory pilot plant investigations. (Co-listed with Civ Eng 464)

465 Environmental Engineering Analysis Laboratory (LEC 1.0 and LAB 2.0) Environmental Engineering analytical principles and techniques applied to the quantitative measurement of water, wastewater and natural characteristics, and application of advanced instrumentation methods in Environmental Engineering. Prerequisite: Civ Eng 261 or equivalent, with a grade of “C” or better. (Co-listed with Civ Eng 465)

467 Environmental Chemistry (LEC 2.0 and LAB 1.0) This course covers the fundamental and applied aspects of environmental chemistry including inorganic, organic, and analytical chemical principles. The course emphasizes the aquatic environmental and covers gas laws and solubility, chemical modeling, equilibria, acid-base and complexation relationships, oxidation and photochemical reactions. Prerequisite: Graduate standing in engineering or science curricula. (Co-listed with Civ Eng 467)

485 Philosophy of Scientific Research (LEC 3.0) Organization and planning of research. Introduction to the philosophy and management of scientific research, particularly issues related to ethics, plagiarism, ownership of intellectual properties, research techniques, technical presentations and time management. The course will address these issues by integrating with case studies. (Co-listed with Chem Eng 425, IDE 425, Civ Eng 485, Elec Eng 481, Comp Eng 481)

Explosives Engineering Courses

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

305 Explosives Handling And Safety (LEC 3.0) Basic handling & safety for explosives, explosive devices and ordnance related to laboratory handling, testing, manufacturing & storage, for both civil and defense applications. Prerequisites: Min Eng 151, Exp Eng 307, successful background check.

307 Principles Of Explosives Engineering (LEC 2.0 and LAB 1.0) Theory and application of explosives in the mining industry; explosives, initiating systems, characteristics of explosive reactions and rock breakage, fundamentals of blast design, drilling and blasting, regulatory and safety considerations. Prerequisites: Min Eng 151; accompanied or preceded by Civ Eng 215 or Geology 220 or Geology 125; Successful background check. (Co-listed with Min Eng 307)

309 Commercial Pyrotechnics Operations (LEC 2.0 and LAB 1.0) Provide participants with training preparing for Missouri Licensed Display Operator (Outdoor) License and advanced lead pyrotechnic
operator training. Class work will be complemented by practical training in laboratory sessions, culminating in a full pyrotechnic show, from start to finish. Prerequisites: Both Chem 1 and Chem 2 or their equivalent, US Citizen or permanent resident, Successful background check, resident enrollment at Missouri S&T.

313 Stage Pyrotechnics and Special Effects (LEC 1.0 and LAB 2.0) Use of energetic materials in close proximity to audiences. Provide participants with training preparing for Missouri Pyrotechnics Display Operators License. Covers: close proximity indoor and outdoor pyrotechnics and special effects. Working with stage crews and talent, safety and permitting. Prerequisites: Both Chem 1 and Chem 2 or their equivalent; US Citizen or permanent resident, successful background check, resident enrollment at Missouri S&T.

350 Blasting Design And Technology (LEC 2.0 and LAB 1.0) Advanced theory and application of explosives in excavation; detailed underground blast design; specialized blasting including blast casting, construction and pre-splitting. Introduction to blasting research. Examination of field applications. Prerequisites: Min Eng 307. Student must be at least 21 years of age. Successful background check. (Co-listed with Min Eng 350)

351 Demolition of Buildings and Structures (LEC 2.0 and LAB 1.0) Provide participants with basics and solid grounding in the equipment, techniques and processes required for the demolition and remediation of mine plant and processing equipment sites and non-mining structures such as buildings, factories, bridges, etc. Field trip required. Prerequisites: Preceded or accompanied by Civ Eng 50 or IDE 140; US citizen or permanent resident, successful background check.

400 Special Problems (IND 1.0-3.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

402 Environmental Controls For Blasting (LEC 2.0 and LAB 1.0) Advanced blast mechanics; overbreak control including comprehensive coverage of perimeter and smoothwall specialist blasting techniques and geotechnical factors affecting blast vibration, limits analysis monitoring and control; air blast control including limits, monitoring and atmospheric and topographic effects. Prerequisites: Min Eng 307, successful background check. (Co-listed with Min Eng 402)

406 Scientific Instrumentation For Explosives Testing & Blasting (LEC 1.0 and LAB 2.0) Application of scientific principles, equipment description and operation for instrumentation of explosive events including blasting. Topics: Blast chamber design, set up, high-speed photography, motion detection and measurement, explosives sensitivity testing, explosives properties testing, vibration measurement & analysis, destruction & demilitarization. Prerequisite: Exp Eng 307 and successful background check.

407 Theory Of High Explosives (LEC 3.0) Study of the application of chemical thermodynamics and the hydrodynamic theory to determine the properties of high explosives; application of detonation theory to steady-state detonations in real explosives; application of the above to the blasting action of explosives. Prerequisite: Successful background check and Graduate Standing. (Co-listed with Min Eng 407)

408 Regulatory Issues the Explosives Industry (LEC 3.0) Comprehensive coverage of the federal regulations governing the explosives industry, including those governing storage of explosives (ATF), transportation of explosives (DOT and TSA), the environment (EPA) and use of explosives (OSM, MSHA & OSHA). Prerequisite: Graduate Standing.

490 Research (IND 1.0-6.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

497 Graduate Cooperative Experience (LAB 3.0) Students on an approved internship will complete a project designed by the advisor and employer. The project selected must require that student apply critical thinking skills and discipline specific knowledge in the work setting. A major report and a formal presentation are required. Prerequisite: 12 hours Exp Eng coursework.

498 Industry Project (LAB 3.0) Students who are currently employed may complete a project in their work setting designed by the advisor and employer. The project selected must require that student apply critical thinking skills and discipline specific knowledge. A major report and a formal presentation are required. Prerequisite: 12 hours Exp Eng coursework.

Geological Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

310 Seminar (RSD 0.5) Discussion of current topics. (Course cannot be used for graduate credit). Prerequisite: Senior standing. (Co-listed with Geology 310, Pet Eng 310)

311 Introduction to International Engineering and Geology (LAB 1.0) The lab for multi-disciplinary design will be as follows: Students will develop a work plan to address design objectives and other considerations including scheduling, budgeting, environmental impacts, and life cycle design. Prerequisites: Senior standing, instructor approval, accompanied by Geo Eng 345.

315 Geostatistical Methods in Engineering and Geology (LEC 3.0) Study of statistical methods in engineering and geological applications including site investigations and environmental data analyses.
Introduction to spatial correlation analysis and geostatistical techniques such as kriging for resource evaluation and estimation.

331 **Subsurface Hydrology (LEC 3.0)** Introduction to the theory and engineering concepts of the movement of subsurface fluids. Properties of water and other subsurface fluids. Hydraulic characteristics of earth materials. Engineering problems related to subsurface fluids. Prerequisites: Geo Eng 50, Math 204.

333 **Risk Assessment In Environmental Studies (LEC 3.0)** This course will present the concepts required to assess the human health and environmental risks resulting from contaminants in soil and groundwater. Course topics include evaluation of data sets, exposure calculation, chemical fate and transport, and development of conceptual site models.

335 **Environmental Geological Engineering (LEC 3.0)** Introduction to engineering geologic mapping for site selection for solid waste disposal facilities; landfill site selection, design, permitting, construction, operation, and closeout/reclamation. Prerequisites: Ge Eng 275, accompanied or preceded by Cv Eng 215.

336 **Geophysical Field Methods (LEC 2.0 and LAB 1.0)** Imaging of selected subsurface features and engineering structures using various geophysical tools. Special emphasis is placed on ground penetrating radar and surface wave techniques. One field trip at student expense required. Prerequisite: Junior level standing or higher. (Co-listed with Geophys 336)

337 **Geological Aspects Of Hazardous Waste Management (LEC 3.0)** Nature and classification of hazardous wastes; federal and state regulation for treatment and disposal; geologic characterization of facility sites; design of impoundments, containment facilities; ground water monitoring and protection; site permitting and licensing planning. Prerequisite: Ge Eng 275.

339 **Groundwater Remediation (LEC 3.0)** A survey of conventional and innovative techniques for remediation of contaminated groundwater. Topics include groundwater cleanup standards, physicochemical properties of groundwater and contaminants, fate and transport of contaminants in the subsurface, hydrogeologic site characterization, and selection process of a remedial technology. Special emphasis is placed on ground penetrating radar and surface wave techniques. One field trip at student expense required. Prerequisite: Ge Eng 275.

341 **Engineering Geology And Geotechnics (LEC 3.0)** Study of procedures and techniques used to evaluate geologic factors for site selection and the design of engineered structures. Prerequisite: Ge Eng 275.

342 **Military Geology (LEC 3.0)** This course will familiarize geologists, geophysicists, civil and geological engineers with the fundamental principles of physical geology, geohydrology and geomorphology as applied to military problems, such as development of fortifications, core infrastructure, water resources and combat engineering requirements. Prerequisite: Ge Eng 275 or graduate standing.

343 **Subsurface Exploration (LEC 2.0 and LAB 1.0)** Lectures and field and laboratory exercises in the use of geologic and geophysical techniques for evaluation of subsurface geology and resources. Prerequisite: Cv Eng 215 or Pe Eng 131.

344 **Remote Sensing Technology (LEC 2.0 and LAB 1.0)** Principles of digital image processing including image enhancement and multispectral classification. Emphasis upon design and implementation of remote sensing systems and analysis of remotely sensed data for geotechnical and environmental investigations. Prerequisite: Geo Eng 248. (Co-listed with Geology 344)

346 **Applications Of Geographic Information Systems (LEC 2.0 and LAB 1.0)** Applications of Geographical Information Systems and remote sensing to environmental monitoring, mineral resource exploration, and geotechnical site evaluation. Prerequisite: Geo Eng 275 or consent of instructor. (Co-listed with Geology 346)

347 **Introduction to International Engineering and Design (LEC 2.0)** A multi-disciplinary design course focused on sustainable design and technology transfer to developing countries. Students will develop a work plan to address design objectives and other considerations including scheduling, budgeting, environmental impacts, and life cycle design. Prerequisite: Senior standing, instructor approval, accompanied by Geo Eng 311.

350 **Geological Engineering Design (LEC 2.0 and LAB 1.0)** Geological engineering design is an open-ended project course requiring the collection of data, analysis and synthesis of that data and design of a socially acceptable, economical solution to the selected problem. Oral and written reports are required. Prerequisite: To be taken in the semester before graduation.

352 **International Engineering and Design (LEC 3.0)** A multi-disciplinary engineering course focused on sustainable design and technology transfer to developing countries. Course includes elements of traditional capstone design classes. Experiential learning through competitions and/or field work is a major component of the class. Prerequisite: To be taken in the semester before graduation.

353 **Regional Geological Engineering Problems In North America (LEC 3.0)** A physiographic approach to engineering materials and problems. Course emphasizes the distribution and engineering characteristics of soil and rock to construction and site problems and includes aggregates, foundations, excavations, surface and ground water, slope stability and arctic conditions.

356 **Renewable Energy Systems (LEC 3.0)** Introduction to the theory and performance prediction of typical renewable energy systems such as, but not limited to, those based on energy from the sun, wind and water, and geothermal. The use of environmental data, including stochastic modeling, for renewable energy system (including wind turbine,
photovoltaic, and geothermal) design is addressed. Prerequisites: Math 204, Phys 24, and preceded or accompanied by Stat 217 or Geo Eng 315. Junior or senior status is required.

361 Transportation Applications of Geophysics (LEC 2.0 and LAB 1.0) Overview of geophysical and non-destructive test methods that are commonly used to investigate transportation structures and their foundations. Emphasis is placed on bridge system substructure, bridge system superstructure, pavement, roadway subsidence, subsurface characterization and vibration measurements. Prerequisite: Junior level standing or higher. (Co-listed with Geophys 361 and Civ Eng 351)

371 Rock Engineering (LEC 3.0) Data requirements for design; engineering properties of rock; characterization of fractures and rock masses; stereonet analysis of discontinuities; graphic analysis of failure; ground stress distribution; tunnel construction methods; ground support principles; selection of tunneling equipment; and specifications for underground construction. Prerequisite: Ge Eng 275.

372 Soil Science In Engineering Practice (LEC 3.0) A study of the ways in which soils and geologic conditions influence engineered projects. Soil formation, soil chemistry and properties to include composition, organic component, ion exchange and water relationships as well as erosion control and revegetation will be covered. Prerequisite: Ge Eng 275.

373 Geologic Field Methods (LAB 3.0) Field practice in geologic mapping and interpretation in the Western United States using topographic base maps and aerial photos. Emphasizes the description and interpretation of stratigraphic sections, sedimentary and tectonic structures. Prerequisite: Two courses in either Geology or Geological Engineering.

374 Geological Engineering Field Methods (LAB 3.0) Instruction in methods of field investigation required for geological engineering studies. Course will include procedures for qualitative and quantitative data collection for characterizing surficial geologic conditions, groundwater and surface water investigations, and other engineering activities. Written reports and field trip required.

376 Environmental Aspects Of Mining (LEC 3.0) Permitting: the legal environment of reclamation and environmental impact assessment; post-mining land-use selection and mine planning for optimum reclamation of all mines: metal, nonmetal, and coal; unit operations of reclamation; drainage, backfill, soil replacement, revegetation, maintenance, etc. Prerequisites: Ge Eng 50; Mi Eng 324 and 326 or prereq./coreq. Cv Eng 215. (Co-listed with Mi Eng 376)

381 Intermediate Subsurface Hydrology And Contaminant Transport Mech (LEC 3.0) A study of the physical/chemical properties of rocks and sediments in the subsurface environment. Emphasis is put on waterrock properties such as permeability, capillarity, and mechanical dispersion. Both microscopic and macroscopic approaches are used. Prerequisites: Cv Eng 230 & Ge Eng 331.

382 Environmental And Engineering Geophysics (LEC 2.0 and LAB 1.0) An introduction to the theory and application of the gravity, magnetic, resistivity, self-potential, induced polarization and electromagnetic methods as applied to the solution of engineering and environmental problems. Prerequisite: Math 22. (Co-listed with Geophys 382)

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

410 Seminar (RSD 1.0) Discussion of current topics. Prerequisite: Graduate student.

425 Applications in Geological Engineering (LEC 3.0) Content is focused on practical aspects of geological engineering. Geotechnical, environmental and geohydrologic case studies are presented to illustrate concepts and relate theory to applications.

431 Advanced Subsurface Hydrology (LEC 3.0) Advanced treatment of selected topics in subsurface hydrology, including groundwater contamination, contaminant transport, land disposal of wastes, aquifer test analysis, injection well technology, etc. Applied hydrogeologic site analysis and flow and transport modeling through solution of selected case examples. Prerequisite: Ge Eng 331 or equivalent.

432 Numerical Methods In Subsurface Flow (LEC 3.0) Development of governing balance equations, constitutive laws and mathematical models of groundwater flow and contaminant transport in porous media. Solution of mathematical models by finite difference and finite element methods for various boundary and initial conditions. Prerequisites: Ge Eng 331, Cmp Sc 73.

435 Advanced Concepts Of Environmental Geological Engineering (LEC 3.0) Application of the principles of geology to the solution of engineering problems in environmental protection and remediation. Topics will include the study of geologic processes and the evaluation of geologic materials as they affect the potential for groundwater contamination, susceptibility of soils to erosion, characterization of the geologic environment for site suitability and the analysis of the criteria necessary for the selection of technologies for minimizing environmental impact. Prerequisite: Graduate level course in environmental geologic studies.
437 **Advanced Geological & Geotechnical Design For Hazardous Waste Mgt** (LEC 3.0) Geological and geotechnical design factors for hazardous waste management facilities and remedial actions (cleanup) of uncontrolled hazardous waste sites. Prerequisite: Ge Eng 337 or consent of instructor.

441 **Geotechnical Construction Practice** (LEC 3.0) Advanced level lecture topics on procedures used for site characterization, standards for earthquake grading and construction, including embankments, building pads, retention structures, roads, levees, and earthen dams. Specific emphasis on preparation of documents involved in such work and engineer's responsibilities. Prerequisite: Geo Eng 341.

446 **Advanced Remote Sensing And Image Processing** (LEC 2.0 and LAB 1.0) Quantitative methods of utilizing remote sensing technology for terrain analysis. Digital image processing of landsat and/or aircraft scanner data for mineral resource studies and geological engineering applications. Prerequisite: Geo Eng 346. (Co-listed with Geology 446)

477 **Discontinuous Rock** (LEC 3.0) Nature and properties of discontinuous rock masses, genesis and properties of joints, role of joints in rock shear strength, slope of stability of jointed rock, fracture flow hydrogeology. Modeling of the mechanical behavior of fractured rock. Prerequisite: Min Eng 331 or Ge Eng 371.

482 **Surface Waves (MASW) and Ground Penetrating Radar (GPR)** (LEC 2.0 and LAB 1.0) Geological engineering applications of surface wave and ground penetrating radar methods are emphasized. Field data will be acquired, processed and interpreted. Prerequisites: Geo Eng 50 or Civ Eng 215 or equivalent, and graduate standing.

484 **Advanced Engineering And Environmental Geophysics** (LEC 3.0) An introduction to the theory and application of the gravity, magnetic, resistivity, self-potential induced polarization, seismic, electromagnetic and GPR methods as applied to the solution of engineering and environmental problems. Prerequisite: Admittance into USAES-S&T Cooperative Degree Program. (Co-listed with Geophys 484)

490 **Research** (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

491 **Internship** (IND 0.0-15.0) Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate programs for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

493 **Oral Examination** (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 **Continuous Registration** (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Geology Courses

300 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

305 **Hydrogeology** (LEC 3.0) This course discusses geologic aspects of major surface and subsurface hydrologic systems of North America. Chemical and physical relationships between groundwater and fractures, faults, karst, subsurface pressures, mineral deposits plus both contaminant and hydrocarbon migration are discussed. Prerequisites: Ge Eng 50 or Geo 51, Geo 223 recommended.

307 **Physical Oceanography** (LEC 3.0) An introduction to the study of the physical and geological processes in the world’s oceans including the importance of the oceans to the environment and to life on Earth. Prerequisite: Geology 325 or equivalent.

308 **Astronomy and Planetary Science** (LEC 3.0) Basic principles of astronomy, the origin and evolution of the universe, stellar evolution, and the origin, composition, and processes operating on the planetary bodies in the solar system (besides the Earth). Prerequisite: Entrance requirements for the MST program in Earth Science.

309 **Meteorology and Climatology** (LEC 3.0) An introduction to the atmospheric and climatic systems of the Earth including weather, paleoclimatology, and global climate change. Prerequisite: Geology 325 or equivalent.

310 **Seminar** (RSD 0.0-6.0) Discussion of current topics. Required for two semesters during senior year. (Course cannot be used for graduate credit). Prerequisite: Senior standing. (Co-listed with Geo Eng 310, Pet Eng 310)

312 **Ore Microscopy** (LEC 1.0 and LAB 2.0) A study of polished sections of minerals and ores under reflected light. Includes the preparation of polished sections, the identification of ore minerals, and the study of the textures, associations, and alterations of ore minerals. Prerequisite: Geo 113.
168 - Geology Courses

320 Advanced Structural Geology (LEC 2.0 and LAB 1.0) The course provides theoretical background, analytical techniques, and hands-on experience for analyzing geologic structures at a variety of scales hand sample to global. Prerequisites: Geology 220, Geophysics 381.

324 Advanced Stratigraphy And Basin Evolution (LEC 3.0) Advanced topics in sedimentary geology including: tectonic controls on sedimentary basin development, global sequence stratigraphy, regional facies and diagenetic patterns, basin hydrogeology, thermal evolution of basins and distribution of economic resources. Prerequisites: Geo 223, 220, preceded or accompanied by Geo 275 recommended.

326 Advanced Historical Geology (LEC 2.0 and LAB 1.0) Study of the physical and biological history of the Earth beginning with the origin of the solar system up to the present. Emphasis will be placed on processes that shaped the Earth and its ecosystems. Prerequisite: Entrance requirements for the MST program in Earth Science.

329 Micropaleontology (LEC 2.0 and LAB 1.0) Introduction to the preparation and study of microscopic fossils. Prerequisite: Geo 227.

330 Granites And Rhyolites (LEC 3.0 and LAB 1.0) Processes governing the generation and crystallization of felsic magma will be covered, with specific reference to: 1) crust vs mantle sources, 2) melt migration and emplacement, 3) magma chamber dynamics, 4) the volcanic-plutonic connection, and 5) the relationship to tectonic setting. A field trip at the student’s expense is required. Prerequisite: Geo 130.

332 Depositional Systems (LEC 3.0) Development of three dimensional depositional models using Walther’s Law, Walther’s Warning and seismic stratigraphy. Emphasis on overall geometries and internal porosity and permeability characteristics of aquifers and hydrocarbon reservoirs. Includes 3-D models for clastic, carbonate and evaporate sequences. Prerequisite: Geology 51 or Geo Eng 50.

334 Advanced Igneous and Metamorphic Petrology (LEC 3.0 and LAB 1.0) Processes governing the formation of igneous and metamorphic rocks as constrained by geochemical, isotopic, and thermodynamic data, with particular reference to the relationship between rock suites and tectonic setting. The laboratory will emphasize the description of rock suites in hand sample and thin section. A field trip at the student’s expense is required. Prerequisite: Geology 130.

338 Computer Mapping In Geology (LEC 2.0 and LAB 1.0) This course introduces the basics of both surface and subsurface geologic mapping. It introduces procedures and problems associated with digitizing, gridding, contouring, volumetrics and generation of three dimensional diagrams on the PC. Integration of field gathered data with USGS and GSI databases for the purpose of making surface geologic maps is also included. Prerequisite: Geo 51.

340 Petroleum Geology (LEC 2.0 and LAB 1.0) Principles of origin, migration, and accumulation of oil and gas. The laboratory introduces the procedures used for exploration, and development of hydrocarbon resources. Prerequisite: Geology 51 or Geo Eng 50 (Introductory Geology course)

341 Applied Petroleum Geology (LEC 1.0 and LAB 2.0) The principles of petroleum geology are applied in solving hydrocarbon exploration and developmental problems. Geological and economical techniques for evaluating hydrocarbon-bearing reservoirs are presented, with methods for decision making under conditions of extreme uncertainty. Prerequisite: Geo 340.

344 Remote Sensing Technology (LEC 2.0 and LAB 1.0) Principles of digital image processing including image enhancement and multispectral classification. Emphasis upon design and implementation of remote sensing systems and analysis of remotely sensed data for geotechnical and environmental investigations. Prerequisite: Ge Eng 248. (Co-listed with Geo Eng 344)

345 Radioactive Waste Management And Remediation (LEC 3.0) Sources and classes of radioactive waste, long-term decay, spent fuel storage, transport, disposal options, regulatory control, materials issues, site selection and geologic characterization, containment, design and monitoring requirements, domestic and foreign waste disposal programs, economic and environmental issues; history of disposal actions, and conduct of remedial actions and cleanup. Prerequisite: Math 204. (Co-listed with Nu Eng 345)

346 Applications Of Geographic Information Systems (LEC 2.0 and LAB 1.0) Applications of Geographical Information Systems and remote sensing to environmental monitoring, mineral resource exploration, and geotechnical site evaluation. Prerequisite: Geo Eng 275 or consent of instructor. (Co-listed with Geo Eng 346)

350 Paleoclimatology and Paleoeoclogy (LEC 3.0) This course will introduce students to the elements of climate, evidence of climate changes, proxy measurements and paleoclimate models. There is a review of Holocene climates and Archean to Pleistocene paleoclimates. Prerequisite: Geology 52.

360 Methods Of Karst Hydrogeology (LEC 3.0) Familiarize geoscientists with the origin and identification of karst features, discuss groundwater movement, engineering problems, water quality and supply in karst areas, and teach investigative techniques including fluorescent dye tracing. Several field trips at student expense will be required. Prerequisite: Geology 51 or Geo Eng 50; Geology 223.

372 Geological Field Studies (LEC 3.0) Intensive review of the scientific literature corresponding to a selected geographical region of geologic interest; followed by a 7 to 10 day long field trip to be held over spring break or after the end of the semester. Students will be expected to bear a portion of the field trip expenses. Repeatable for credit. Prerequisites: Geology 51 or Geo Eng 50.
373 Field Geology (LAB 3.0) Field practice in geologic mapping and interpretation in the Western United States using topographic base maps and aerial photos. Emphasizes the description and interpretation of stratigraphic sections, sedimentary and tectonic structures. Prerequisite: Two Geology courses.

374 Advanced Field Geology (LAB 3.0) Detailed field work in areas related to the projects of Geology 373. Courses to be taken the same summer. A written report on the full summer's projects is required. Prerequisite: Geo 373.

375 Applied Geochemistry (LEC 2.0 and LAB 1.0) Application of the principles of geochemistry and techniques of geochemical analysis in a student research project investigating geochemical processes (mineral deposits, environmental geochemistry, trace element migration, or water-rock interaction). Field trip fee required. Prerequisites: Geo 113 and Geo 275.

376 Aqueous Geochemistry (LEC 3.0) Studies of the interaction of water with minerals and organic materials at low temperatures; including processes affecting the migration of elements (alteration, precipitation, and adsorption), the influence of geochemical processes on water composition, weathering, soil formation, and pollution. Field trip fee required. Prerequisite: Geo 275.

378 Isotope Geochemistry (LEC 2.0 and LAB 1.0) Introduction to the fundamentals of radiogenic and stable isotopes as used to understand geologic processes. The use of selected isotopic systems in petrology, ore petrogenesis, paleontology, and the global climate systems will be discussed. Prerequisites: Geology 130, 223, 275.

383 Electrical Methods In Geophysics (LEC 3.0) The theory and instrumentation for measurements of the electrical properties of the earth. Includes passive and active techniques, the advantages and disadvantages of the various techniques, and geologic interpretations of electrical soundings. Several weekends are spent making a variety of electrical surveys of local features. Prerequisites: Math 325 and Geop 321.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

394 Coal Petrology (LEC 3.0) Formation, composition, and properties of coals. Discussion of the geology of selected coal deposits, the analysis of coal, and the optical identification of coal minerals. Prerequisite: Permission of instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

405 Geology of Natural Resources (LEC 3.0) The origin and distribution of economically important natural resources including soils, water resources, metals, non-metals, building materials, petroleum, and other energy resources. Prerequisites: Geology 325 and 326 or equivalents.

407 Environmental Geology (LEC 3.0) Overview of environmental problems facing humans. Emphasis will be placed on surface and groundwater pollution, geological hazards, and pressures on Earth's ecosystems and natural resources by urbanization and population growth. Prerequisites: Geology 325 and 326 or equivalents.

410 Seminar (RSD 0.0-6.0) Discussion of current topics.

412 Advanced Ore Microscopy (LEC 1.0 and LAB 2.0) A study of ore suites utilizing various advanced, quantitative ore microscopy techniques including hardness, spectral reflectance, indentation, color, rotation property measurements, fluid inclusion geothermometry, and salinity measurements. Laboratory study includes demonstration and operation of the luminoscope and other microbeam techniques. Prerequisite: Geo 312.

413 Clay Mineralogy (LEC 2.0 and LAB 1.0) Mineral structure, geochemical properties, occurrence, environment, and uses of clays. Determination of physical properties, optics, x-ray diffraction, and thermal features of clays. Field trip fee required. Prerequisites: Geo 113 and 275, or Chem 237, or CV Eng 315, or Ge Eng 372.

420 Analytical Structural Geology (LEC 2.0 and LAB 1.0) The course provides theoretical background, analytical techniques, and hands-on experience, for quantifying processes that lead to the formation and evolution of rocks and structures produced as a result of deformation at a variety of scales - hand sample to global. Poster - and oral - presentations, and a research paper required. Prerequisites: Geology 220, Geophysics 381.

423 Sedimentary Basin Analysis (LEC 3.0) An advanced study of stratigraphic, diageneric and tectonic processes in sedimentary basins. Prerequisites: Geo 220, 223, 275 or 375 or 376.

425 Advanced Physical Geology (LEC 3.0) Examination of topics concerned with the physical properties of earth materials, processes affecting change of the surface and interior of the earth, and the driving forces causing these changes. Weekly critical assessment of literature, and an oral presentation and term paper required. Prerequisite: Consent of instructor.

431 Clastic Sedimentary Petrology (LEC 2.0 and LAB 1.0) Petrology and petrography of clastic sedimentary rocks. Emphasis on origin, diagenesis and description of clastic, sedimentary rocks. Prerequisite: Geo 223.

432 Carbonate Petrology (LEC 2.0 and LAB 1.0) Petrology, chemistry and sedimentology of carbonates and other associated chemical sedimentary rocks. Prerequisites: Geo 130, 114, 223 and Chem 3 or equivalent Geo 275 recommended.
433 Advanced Igneous Petrology (LEC 2.0 and LAB 1.0) The genesis of eruptive rocks as evidenced by the physicalchemical conditions of formation of their constituent minerals. A critical examination of various magmatic processes. Use of advanced petrographic techniques. Prerequisite: Geo 234.

434 Granite and Rhyolite Petrogenesis (LEC 3.0 and LAB 1.0) The origin of granites and rhyolites with respect to extreme fractionation, crustal anatexis, magma mixing, and tectonic setting will be explored through critical reading of the literature and examination of hand samples and thin sections from classic geologic terranes. A research paper is required as well as a field trip at the student's expense. Prerequisite: Geology 130.

435 Applied Ore Microscopy (LEC 1.0 and LAB 2.0) Application of ore microscopic and petrographic techniques to problems in ore beneficiation, pelleting, sintering, smelting, refining, refractories, cement, mining, and exploration. Discussions and laboratories are based upon industrial case histories. Prerequisite: Geo 312.

437 Advanced Palynology (LEC 1.0 and LAB 2.0) Study of the processes of sporopollenin preservation, sedimentation and palynofacies. Major emphasis on independent palynostratigraphic research. Chronicle of Phanerozoic palynology in lectures. Prerequisite: Geology 227 or 329.

440 Advanced Geochemistry (LEC 3.0) A study of the absolute and relative abundance of elements and isotopes in the Earth, principles of element transport, formation of the Earth's crust, mineral deposits, and soils. Field trip fee required. Prerequisite: Geo 275.

443 Advanced Petroleum Geology (LEC 1.0 and LAB 2.0) Examples of various types of oil and gas accumulation are reviewed in detail. Study of criteria useful in evaluating the petroleum potential of undrilled areas. Special investigation assignment is required. Prerequisite: Geo 340.

446 Advanced Remote Sensing And Image Processing (LEC 2.0 and LAB 1.0) Quantitative methods of utilizing remote sensing technology for terrain analysis. Digital image processing of landsat and/or aircraft scanner data for mineral resource studies and geological engineering applications. Prerequisite: Geo Eng 346. (Co-listed with Geo Eng 446)

450 Advanced Paleoclimatology and Paleoecology (LEC 3.0) Advanced study of paleoclimatic and paleoecologic processes since the Archean, and the interpretation of Holocene climate changes, including human impacts. Extensive presentations and discussions of current ideas and techniques in paleoclimatic studies. Prerequisites: Geology 223 and 227.

470 Field and Laboratory Studies in Earth Science (LAB 3.0) Hands-on laboratory and field experiences in the Earth Sciences. This course is designed to be taught in an intensive three week session during the summer on the S&T campus. Prerequisites: Geology 325 and 326 or equivalents, and at least one additional course in the MST Earth Science program.

478 Advanced Isotope Geochemistry (LEC 2.0 and LAB 1.0) The use of radiogenic and stable isotopes in geology in the study of the evolution of Earth, crust, mantle, and the Solar System as well as applications to geothermometry, ore petrogenesis, paleontology, and the global climate system. Prerequisites: Geology 130, 223, 275.

480 Geotectonics (LEC 3.0) A critical study of the origin, and differentiation of the earth, evolution of the crust, and plate tectonics. Geology of the continents and ocean basins. Regional tectonic analysis of Precambrian shields, platforms, orogenic belts, and a review of internal energy sources. Emphasis is on North America. Prerequisite: Geo 220.

481 Geodynamics (LEC 3.0) The applications of continuum physics to geological and petroleum engineering problems. Topics include plate tectonics, stress and strain in solids, elasticity and flexure, heat transfer, gravity, fluid mechanics, rock rheology, faulting, and flow in porous media. Prerequisites: Math 22 and Geology 220. (Co-listed with Pet Eng 481)

489 Ore Deposition (LEC 2.0 and LAB 1.0) An advanced study of mineral deposits, time and space in deposition, theories of deposition and their effect on exploration. Discussions based on maps, logs, and samples from the world's typical mineral deposits. Two all day field trips at student expense required. Prerequisite: Geo 294.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.
Geophysics Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

320 Computational Geophysics (LEC 1.0 and LAB 2.0) Scientific programming in a UNIX/Linux environment, with emphasis on solving geophysical problems such as linear and nonlinear inversion, spectral analysis, seismicity, seismic wave attenuation, shear-wave splitting, and seismic tomography. Prerequisite: Geophys 270.

321 Potential Field Theory (LEC 3.0) The mathematics and physics of gravitational, magnetic, and electrical fields of the earth as derived from potential functions, with applications to practical problems. The theorems of Laplace, Poisson, Gauss, and Green and their applications to geophysics are presented. Prerequisite: Accompanied or preceded by Math 325.

336 Geophysical Field Methods (LEC 2.0 and LAB 1.0) Imaging of selected subsurface features and engineering structures using various geophysical tools. Special emphasis is placed on ground penetrating radar and surface wave techniques. One field trip at student expense required. Prerequisite: Junior level standing or higher. (Co-listed with Geo Eng 336)

361 Transportation Applications of Geophysics (LEC 2.0 and LAB 1.0) Overview of geophysical and non-destructive test methods that are commonly used to investigate transportation structures and their foundations. Emphasis is placed on bridge system substructure, bridge system superstructure, pavement, roadway subsidence, subsurface characterization and vibration measurements. Prerequisite: Junior level standing or higher. (Co-listed with Geo Eng 361 and Civ Eng 351)

377 Seismic Interpretation (LEC 1.0 and LAB 2.0) An introduction to 2-D/3-D seismic structural interpretation, stratigraphic interpretation, reservoir identification and evaluation, and horizon and formation attributes. The students are expected to master interactive 2-D/3-D seismic interpretation software packages that are routinely used in the petroleum industry. Prerequisite: Geophys 270 or 385.

380 Seismic Stratigraphy (LEC 2.0 and LAB 1.0) A study of the seismic expression of depositional models. Reflection patterns and reflection amplitudes are interpreted to determine bed thicknesses, fluid content, depositional environment, and lithology. Special data acquisition and processing techniques are examined. Prerequisites: Geop 385, Geo 220, 223.

381 Global Tectonics (LEC 3.0) An integrated view of the Earth’s structure and dynamics with an emphasis on information gained through geophysical methods. Topics include seismology, heat flow, gravity, rheological and compositional structure, plate motions and intermotions, and mantle driving mechanisms for plate tectonics. Prerequisite: Geo 220.

382 Environmental And Engineering Geophysics (LEC 2.0 and LAB 1.0) An introduction to the theory and application of the gravity, magnetic, resistivity, self-potential, induced polarization and electromagnetic methods as applied to the solution of engineering and environmental problems. Prerequisite: Math 22. (Co-listed with Geo Eng 382)

383 Electrical Methods In Geophysics (LEC 2.0 and LAB 1.0) The theory and instrumentation for measurements of the electrical properties of the earth. Includes passive and active techniques, the advantages and disadvantages of the various techniques, and geologic interpretations of electrical sounding. Several weekends are spent making a variety of electrical surveys of local features. Prerequisites: Math 325 and Geop 285 or Geop 382.

385 Exploration And Development Seismology (LEC 2.0 and LAB 1.0) Principles of reflection seismology as applied to the delineation of geologic structures and the determination of stratigraphy and lithology. Emphasis on both the capabilities and limitations of the seismic method. The laboratory utilizes both modeled and actual seismic data. Prerequisite: Math 22.

386 Wave Propagation (LEC 3.0) A study of Hamilton’s principle and energy theorems, fundamentals of plane wave theory, waves in stratified fluids, elastic waves in solids, electromagnetic and hydromagnetic radiation, and Allen’s functions and point sources. Prerequisites: Geop 281, 321.

388 Geophysical Instrumentation (LAB 1.0) Field and laboratory practice in the use of geophysical instrumentation. Techniques of geophysical data reduction and interpretation are also covered. May be taken more than once for credit with Geop 383 and Geop 384. Prerequisite: Concurrent registration in Geop 382, 283 or 384.

389 Seismic Data Processing (LEC 2.0 and LAB 1.0) Introduction to seismic data processing. Topics to be covered include statics corrections, filtering, velocity analysis, deconvolution, stacking and migration. Prerequisites: Math 22, and Geop 283 and Geop 384. Prerequisite: Concurrent registration in Geop 382, 283 or 384.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

410 Seminar (RSD 0.0-6.0) Discussion of current topics.

483 Advanced Electrical And Electromagnetic Methods In Geophysical Exp (LEC 2.0 and LAB 1.0) Theory of the electrical geophysical methods as applied to subsurface investigations addressing geologic, engineering, groundwater and contaminant transport problems. Course content includes both passive and active methods and recent advances in
Information Systems and Technology Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

321 Network Performance Design And Management (LEC 3.0) This course provides analytical capabilities needed to effectively design, deploy, and manage computer networks and protocols. Prerequisites: IST 223, IST 233.

342 E-Commerce Architecture (LEC 3.0) Course will cover the issues associated with computer architecture, as it relates specifically to e-commerce applications. Topics will include e-commerce systems and processes, specialized software, and databases. Prerequisite: IST 233 or IST 336.

343 Database Applications in Business (LEC 3.0) Design, development and implementation of application software typical to the modern business environment utilizing popular commercial database management systems such as Oracle and Access. Focus given to business case modeling, requirement analysis, database design, and implementation challenges. Project oriented. Prerequisite: IST 243.

351 Leadership In Technology-Based Organizations (LEC 3.0) The course focuses on the knowledge and skills necessary for the development and implementation of effective strategies for the management of technology-based organizations. This involves: developing a general management perspective on technology and innovation, examining the problems of new product development, identifying distinctive technological competencies, licensing and marketing technologies, assessing the organizational and industrial context of technology. Prerequisite: Senior or Graduate Standing.

352 Advanced Web Development (LEC 3.0) Advanced Web development techniques to provide dynamic interaction; methods for extracting and delivering dynamic information to/from Web servers -- a hands-on approach. Interaction with other Web servers, especially database servers, to obtain and deliver information. Project work is required. Prerequisite: IST 286.

353 Modular Software Systems in Java (LEC 3.0) Introduction to Software Life Cycle and characteristics of large modular software systems. Exploration of software support for such systems, using Java, including use of GUI interfaces, advanced I/O and String handling, Interfaces, Threads, and other modularity features. Program project included. Prerequisites: IST 151 and IST 231.

354 Multi-Media Development And Design (LEC 3.0) Students will learn current practices for development and design of interactive multimedia. The course covers tools for development of 2-D and 3-D graphics, video, audio, animation, and integrated multimedia environments. Prerequisites: IST 51 or Comp Sci 53 or Comp Sci 73 or Comp Sci 74.
357 Network Economy (LEC 3.0) Emerging Network/Internet economy, using traditional economic tools. Topics: production and reproduction cost of information, information as an "experience good," versions of products, switching cost, lock-in effects, market adoption dynamics, first-mover advantage, intellectual property rights. Prerequisite: Econ 121 or Econ 122. (Co-listed with Econ 357)

361 Information Systems Project Management (LEC 3.0) The course overviews general project management principles and then focuses on information system application development. Topics include requirements analysis, project scheduling, risk management, quality assurance, testing, and team coordination. Prerequisite: Senior or Graduate Standing.

368 Law and Ethics in E-Commerce (LEC 3.0) Provides the ethical framework to analyze the ethical, legal, and social issues that arise for citizens and computer professionals regarding the computerization of society. Topics include: free speech, privacy, intellectual property, product liability, and professional responsibility. (Co-listed with Philos 368)

380 Introduction to Web and New Media Studies (LEC 3.0) The course covers web culture, including topics such as social media, citizen journalism, crowd intelligence, privacy, and copyright. Students cannot receive credit for both this course and IST 480 (Advanced Web and New Media Studies). Prerequisite: Junior or Senior standing.

385 Human Computer Interaction (LEC 3.0) Introduction to the field of Human-Computer Interaction (HCI). Students examine issues and challenges related to the interaction between people and technology. The class explores the social and cognitive characteristics of people who use information systems. Students learn techniques for understanding user needs, interface prototyping, and interface evaluation. Prerequisite: Psych 50.

386 Human-Computer Interaction Prototyping (LEC 1.5 and LAB 1.5) This course covers designs, methods and tools for creating low and high fidelity prototypes of information technology systems, which is part of the iterative design cycle commonly used for the creation of usable information technologies. Prerequisites: IST 286 or web design experience; preceded or accompanied by IST 385.

387 Human-Computer Interaction Evaluation (LEC 1.5 and LAB 1.5) This course covers research and analysis methods and tools for evaluation of the impact of information technology systems on humans and organizations. The focus will be on practical evaluation with the goal of providing recommendations for improving system functionality and usability. Prerequisite: Preceded or accompanied by IST 385.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This is designed to give the department an opportunity to test a new course. Variable title.

435 Mobile Data Management and Applications (LEC 3.0) This course will describe and evaluate various wireless transmission techniques, communication network components and their characteristics, networking protocols, and network architectures. Appraise their use in existing and evolving applications, along with the management implications of such use. Prerequisite: Graduate standing.

436 Foundations of Internet Computing (LEC 3.0) The foundations of Internet Computing include computer networks and Web sites. Networks are covered thoroughly and research directions for networks are discussed. Web site design and research findings about site usability considerations are examined. Security of communications for computing, especially wireless communications, are explored. Prerequisite: IST MS entrance requirements, including solid programming knowledge.

443 Information Retrieval and Analysis (LEC 3.0) Covers the applications and theoretical foundations of organizing and analyzing information of textual resources. Topics include information storage and retrieval systems, web search engines, text mining, collaborative filtering, recommenders systems. Students will also learn the techniques with the use of interactive tools such as SAS. Prerequisite: ERP 345 or statistics knowledge.

444 Essentials of Data Warehouses (LEC 3.0) This course presents the topic of data warehouses and the value to the organization. It takes the student from the database platform to structuring a data warehouse environment. Focus is placed on simplicity and addressing the user community needs. Prerequisite: IST 223 or equivalent relational database experience. (Co-listed with ERP 444)

445 Database Marketing (LEC 3.0) Intro to methods and concepts used in database marketing: 1) predictive modeling techniques (e.g., regression, decision trees, cluster analysis) and 2) standard processes for mapping business objectives to data mining goals to produce a deployable marketing model. Metrics like lifetime value of a customer and ROI will be covered. Several application areas covered. Prerequisite: Statistics understanding, programming understanding, familiarity with spreadsheets.
448 Building the Data Warehouse (LEC 3.0) Data modeling and processes needed to populate a data warehouse; tradeoffs among several models and tools; technical issues that are faced, such as security, schemas, Web access, other reporting techniques. Prerequisite: IST 444.

461 Advanced Information Systems Project Management (LEC 3.0) Project management principles, first from a general perspective, and then focused specifically on information system application development are explored. Topics include requirements analysis, project scheduling, risk management, quality assurance, testing, and team coordination. Report writing and research literature searches are required. Prerequisite: IST MS Entrance requirements, with strong programming knowledge.

480 Advanced Web and New Media Studies (LEC 3.0) The course covers web culture, including topics such as social media; citizen journalism, crowd intelligence, privacy, and copyright. This course is an advanced version of Intro to Web Studies, with additional assignments. Prerequisite: Graduate standing.

487 Research Methods in Human-Computer Interaction (LEC 1.5 and LAB 1.5) This course covers quantitative and qualitative research methods for exploring the interaction between people and information technologies. The course covers techniques and tools for carrying out literature reviews, forming research goals, conducting research, writing manuscripts and live presentations. Prerequisite: IST 385.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (LEC 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Materials Science and Engineering Courses

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

325 Materials Selection in Mechanical Design (LEC 3.0) This course will introduce the basics of materials selection in mechanical design. It will also introduce the benefits of computational materials and process selection. The students will also learn to use a commercially available materials selection software. This course will be offered as Distance Ed. Prerequisite: Met Eng 121.

341 Tissue Engineering I (LEC 3.0) The course will introduce senior undergraduate students to the principles and clinical applications of tissue engineering including the use of biomaterials scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. Prerequisite: Senior standing. (Co-listed with Bio Sci 341)

348 Energy Materials (LEC 3.0) The objectives of the course are to understand how the rational design and improvement of chemical and physical properties of materials can lead to energy alternatives that can compete with existing technologies. Discussions on the present and future energy needs from a view point of multidisciplinary scientific and technological approaches. Prerequisite: Senior standing.

351 Advanced Phase Equilibria (LEC 3.0) Advanced aspects of unary, binary and ternary organic, phase equilibria. Includes practical examples of the applications of phase diagrams to solve engineering problems. Prerequisite: Graduate standing.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

410 Seminar (RSD 0.0-6.0) (Variable) Discussion of current topics.

421 Bonding, Crystallography, and Structure-Property Relationships (LEC 3.0) Principles of electronic structure and chemical bonding in solids and their relationships to electrical, mechanical, thermal, and optical properties. An exploration of reciprocal lattices and tensor properties of crystals; consideration of the impact of crystal symmetry on anisotropy. The influence of defects and grain boundary phenomena on material behavior. Prerequisite: Graduate standing, or undergraduate standing with instructor and advisor approval.

422 Thermodynamics and Phase Equilibria (LEC 3.0) Classical thermodynamic treatment of materials and material processing based on the 1st and 2nd Laws of Thermodynamics and phase equilibria.
Mathematics Courses - 175

considerations. The course will cover equilibria in gaseous systems, gas-solid reactions including passive and active oxidation, solution thermodynamics, phase equilibria in solution systems, and electrochemistry. Prerequisite: Graduate standing, or undergraduate standing with instructor and advisor approval.

423 Kinetic Theory for Materials (LEC 3.0) Phenomenological and atomistic theories of diffusion in materials including discussion of short circuit diffusion and ionic diffusion in an electric field. Fundamentals of phase transformation in materials; chemical fluctuation, nucleation and growth theory; kinetic models for evaluating and predicting diffusion controlled transformation kinetics. Prerequisite: Graduate standing, or undergraduate standing with instructor and advisor approval.

441 Tissue Engineering II (LEC 3.0) The course will introduce graduate students to the principles and clinical applications of tissue engineering including the use of biomaterials, scaffolds, living cells and signaling factors to develop implantable parts for the restoration, maintenance, or replacement of biological tissues and organs. A related topic term paper and oral presentation are expected. Prerequisite: Graduate standing. (Co-listed with Bio Sci 441)

443 Nanomaterials (LEC 3.0) Introduction of the fundamentals of nanomaterials and recent developments on nanomaterials. Topics include physical and chemical properties, synthesis, processing, and applications of nanomaterials. Example nanomaterials include nanoparticles, nanotubes, and nanowires. Students will need to complete a project related to nanomaterials. Prerequisite: Graduate Standing. (Co-listed with Chem Eng 443)

448 Advanced Energy Materials (LEC 3.0) The objectives of the graduate level course are to review the recent developments on advanced energy materials and systems in addition to basic understanding how chemical and physical properties of materials can lead to energy alternatives. Prerequisite: Graduate standing.

490 Research (IND 0.0-15.0) (Variable) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

491 Internship (IND 0.0-15.0) (Variable) Students working toward a doctor of engineering degree will select with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

493 Oral Examination (IND 0.0) (Variable) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D students may be processed during intersession. Off-campus M.S. students must be enrolled in an oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Mathematics Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Intermediate Differential Equations (LEC 3.0) Linear differential equations, vector-matrix systems, existence and uniqueness theory, nonlinear systems, phase-plane analysis, introduction to stability theory. Prerequisite: Math 204 or Math 229.

303 Methods of Applied Mathematics (LEC 3.0) Methods to develop and analyze mathematical models. Topics include dimensional analysis and scaling, perturbation methods, and the construction of ordinary and partial differential equation models. Prerequisites: Math 204 or 229 with a grade of "C" or better, programming competency.

305 Modern Algebra I (LEC 3.0) Equivalence relations and functions, basic properties of groups, subgroups, permutations, cosets and Lagrange's Theorem, homomorphisms and isomorphisms, factor groups. Prerequisite: Math 209 or graduate standing; preceded or accompanied by Math 208.

306 Modern Algebra II (LEC 3.0) This course is a continuation of Math 305. RINGS AND FIELDS ARE DISCUSSED. Euclidean domains, principal ideal domains, unique factorization domains, vector spaces, finite fields and field extensions are studied. Prerequisite: Math 305.

307 Combinatorics And Graph Theory (LEC 3.0) Covers some basics of enumeration and graph theory. Topics are selected from the following: permutations combinations, the inclusion/exclusion principle, generating functions, recurrence relations, trees, networks, graph connectivity and graph coloring. Prerequisite: Cmp Sc 128 or Math 209.

308 Linear Algebra II (LEC 3.0) Eigenvalue problems, Cayley-Hamilton theorem, Jordan normal form, linear functionals, bilinear forms, quadratic forms, orthogonal and unitary transformations, selected applications of linear algebra. Prerequisite: Math 208.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>309</td>
<td>Advanced Calculus I (LEC 3.0)</td>
<td>3.0</td>
<td>Completeness of the set of real numbers, sequences and series of real numbers, limits, continuity and differentiability, uniform convergence, Taylor series, Heine-Borel theorem, Riemann integral, fundamental theorem of calculus, Cauchy-Riemann integral. Prerequisite: Math 22 and Math 209, or a 300-level mathematics course, or graduate standing.</td>
</tr>
<tr>
<td>310</td>
<td>Undergraduate Seminar (SEM 1.0-3.0)</td>
<td></td>
<td>Discussion of advanced or current topics. (Course cannot be used for graduate credit).</td>
</tr>
<tr>
<td>311</td>
<td>Advanced Calculus II (LEC 3.0)</td>
<td>3.0</td>
<td>Euclidean n-space, differentiation and integration of scalar functions of several variables, maxima and minima theory, change of variables, differentiation and integration of vector functions of several variables, Divergence theorem, Stokes' theorem. Prerequisite: Math 309.</td>
</tr>
<tr>
<td>315</td>
<td>Introduction To Real Analysis (LEC 3.0)</td>
<td>3.0</td>
<td>Riemann-Stietjes integration, sequences and series of functions, uniform approximation, the Banach Space C(a,b), Lebesgue measure and integration, the space LP(a,b), Fourier series. Prerequisite: Math 309.</td>
</tr>
<tr>
<td>322</td>
<td>Vector And Tensor Analysis (LEC 3.0)</td>
<td>3.0</td>
<td>Vector algebra, vector differential and integral calculus, line and surface integrals, theorems of Stokes and Gauss, tensor algebra and tensor analysis, applications to problems in kinematics, elasticity theory, fluid mechanics, electromagnetic theory, relativity theory. Prerequisite: Math 22; Math 203 or Math 208.</td>
</tr>
<tr>
<td>325</td>
<td>Partial Differential Equations (LEC 3.0)</td>
<td>3.0</td>
<td>Linear equations, heat equation, eigenfunction expansions, Green's formula, inhomogeneous problems, Fourier series, wave equation. Prerequisite: Math 204 with a grade of "C" or better.</td>
</tr>
<tr>
<td>330</td>
<td>Topics In Geometry (LEC 3.0)</td>
<td>3.0</td>
<td>A survey of non-Euclidean geometries, finite geometries, affine and projective planes, metric postulates for the Euclidean plane, and selected topics. Prerequisite: Math 208.</td>
</tr>
<tr>
<td>337</td>
<td>Financial Mathematics (LEC 3.0)</td>
<td>3.0</td>
<td>The course objective is to provide an understanding of the fundamental concepts of financial mathematics. Topics include pricing, assets-liability management, capital budgeting, valuing cash flow, bonds, futures, swaps, options. Preparation for the financial mathematics actuarial exam will be provided. Prerequisites: Math 15 or Math 21, Econ 221 or Econ 222 or Econ 250 or Econ 321, Stat 211 or Stat 213 or Stat 215 or Stat 217 or Stat 343. (Co-listed with Econ 337)</td>
</tr>
<tr>
<td>340</td>
<td>Mathematical Analysis For Secondary Teachers (LEC 3.0)</td>
<td>3.0</td>
<td>Designed to help teachers gain a deeper understanding of the fundamental idea in analysis, that of a limit. A discovery method is used which includes both individual and group work. Students will present their results in written and oral format. Prerequisite: Math 22 or equivalent.</td>
</tr>
<tr>
<td>341</td>
<td>Mathematical Analysis For Secondary Teachers Practicum (LEC 1.0)</td>
<td>1.0</td>
<td>An instructional unit based on the discovery method used in Math 340 will be designed by each student. These units will be class tested. The unit and results of class testing will be presented both in written and oral format. Prerequisite: Math 340.</td>
</tr>
<tr>
<td>351</td>
<td>Introduction To Complex Variables (LEC 3.0)</td>
<td>3.0</td>
<td>The basic tools of complex variables are studied. These include the Cauchy-Riemann equations, complex contour integration, the Cauchy-Goursat theorem, conformal mappings, the calculus of residues and applications to boundary value problems. Prerequisite: Math 204.</td>
</tr>
<tr>
<td>354</td>
<td>Mathematical Logic I (LEC 3.0)</td>
<td>3.0</td>
<td>A mathematical introduction to logic with some applications. Functional and relational languages, satisfaction, soundness and completeness theorems, compactness theorems. Examples from Mathematics, Philosophy, Computer Science, and/or Computer Engineering. Prerequisite: Philos 15 with junior standing or Math 305 or Comp Sci 253 or Comp Eng 111. (Co-listed with Comp Eng 354, Comp Sci 354 and Philos 354)</td>
</tr>
<tr>
<td>361</td>
<td>Problem Solving In Pure Mathematics (LEC 1.0)</td>
<td>1.0</td>
<td>Problems from pure mathematics, including analysis, algebra, number theory, set theory, finite mathematics, probability and statistics. Emphasis on identifying or inventing ways to solve problems based on the student's entire mathematics background. Prerequisites: Corequisite Math 309 and Senior standing.</td>
</tr>
<tr>
<td>371</td>
<td>Problem Solving In Applied Mathematics (LEC 1.0)</td>
<td>1.0</td>
<td>Problems from applied mathematics which are open-ended, and do not always have a unique correct solution. Emphasis on developing mathematical models and writing solution narratives, including clarity, analysis, and design. Prerequisites: Math 209 and Senior standing.</td>
</tr>
<tr>
<td>381</td>
<td>Great Theorems In Mathematics (LEC 1.0)</td>
<td>1.0</td>
<td>A study of some of the great theorems which have shaped the development of mathematics and human civilization. History, the changing nature of mathematics, and the mathematical content of the theorems themselves, will all be addressed. Sources as close to the originals as possible will be used. Prerequisites: Math 209 and Senior standing.</td>
</tr>
<tr>
<td>383</td>
<td>Operational Calculus (LEC 3.0)</td>
<td>3.0</td>
<td>The Laplace transformation, properties of the transformation, various applications to and partial differential equations, systems with step and Dirac functions as driving forces, various non-elementary functions and their transforms, problems in heat conduction and wave motion, Fourier transforms and their operational properties. Prerequisite: Math 204.</td>
</tr>
<tr>
<td>385</td>
<td>Introduction To Topology (LEC 3.0)</td>
<td>3.0</td>
<td>Metric spaces; general topological spaces; connectedness, compactness, separation properties, functions and continuity. Prerequisite: Math 309.</td>
</tr>
<tr>
<td>390</td>
<td>Undergraduate Research (IND 0.0-6.0)</td>
<td></td>
<td>This course is designed for the undergraduate student who wishes to engage in research. It is not to be used for graduate credit nor for more than six credit hours of undergraduate credit. The subject and credit are to be arranged with the instructor. Prerequisite: Consent of instructor.</td>
</tr>
</tbody>
</table>
400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

402 Mathematical Physics I (LEC 3.0) Vector spaces, generalized coordinate transformations, vector analysis, tensors, partial differential equations in physics and boundary value problems, orthogonal functions and solutions to ordinary differential equations, hypergeometric, confluent hypergeometric, Legendre, Laguerre, and Bessel functions, Hermite polynomials, Green's functions in one dimension. (Co-listed with Physics 402)

403 Mathematical Physics II (LEC 3.0) Green's functions in three dimensions, integral equations, complex variable theory and contour integration, group theory with applications to quantum mechanics, solid state and molecular physics. Prerequisite: Math 402 or Physics 402. (Co-listed with Physics 403)

405 Finite Fields And Applications (LEC 3.0) After reviewing basic group theory and introducing basic properties of commutative rings, the main focus of the course will be on topics such as structure of finite fields, polynomials over finite fields, and applications such as coding theory and cryptography. Prerequisite: Math 305.

406 Introduction to Ring Theory (LEC 3.0) Properties of rings with an emphasis on commutative rings. Ideals, factor rings, ring homomorphisms, polynomial rings; factorization, divisibility, and irreducibility. Introduction to extension fields and Galois theory. Applications may be chosen based on the interests of the students. Prerequisite: Math 305.

407 Group Theory (LEC 3.0) Groups, subgroups, and factor groups; homomorphisms, isomorphisms, and associated theorems; abelian groups; Sylow theorems and p-groups; permutation groups; free groups and generators; representation theory; cohomology theory. Prerequisite: Math 306.

408 Applied Matrix Theory (LEC 3.0) A second course in matrix theory directed toward applications. Linear spaces, linear operators, equivalence and similarity, spectral theorem, canonical forms, congruence, inertia theorem, quadratic forms, singular value decomposition and other factorizations, generalized inverses. Applications to optimization, differential equations, stability. Prerequisites: Math 203, 208, or 302.

410 Graduate Seminar (RSD 1.0-3.0) Discussion of topics of current interest. Prerequisite: Graduate standing.

415 Functions Of A Real Variable I (LEC 3.0) Measure spaces, extensions of measures, probability spaces, measures and distributions in normed linear spaces, product measures, independence, integral and expectation, convergence theorems, Radon-Nikodyn theorem and applications. Lp spaces, selected topics. Prerequisite: Math 315.

416 Functions Of A Real Variable II (LEC 3.0) Abstract measures and integrals, the Daniell integration theory, integration on locally compact Hausdorff spaces, integration in function spaces, selected topics. Prerequisite: Must be preceded by Math 415.

417 Functional Analysis I (LEC 3.0) Linear transformations, Hahn-Banach theorem, open-mapping theorem, closed graph theorem, uniform boundedness theorem, self adjoint and normal operators, and related topics of Banach and Hilbert space theory. Prerequisites: Math 315 and (Math 308 or Math 385)

418 Functional Analysis II (LEC 3.0) Spectral analysis of linear operators, spectral theorems, selected applications, an introduction to the theory of topological linear spaces, and papers from the recent literature. Prerequisites: Math 415 and 417.

435 Calculus Of Variations I (LEC 3.0) Linear spaces, linear operators, and functionals, necessary conditions, transversality, corner conditions, Hamilton-Jacobi theory, direct methods, eigenvalue problems, isoperimetric problems, theory of the second variation, differential forms and n-dimensional manifolds, applications to differential equations, conservation laws, dynamic programming, and Pontryagin maximum principle, application in physics, engineering economics. Prerequisite: Math 311.

436 Calculus Of Variations II (LEC 3.0) Continuation of Math 435. Prerequisite: Must be preceded by Math 435.
Mechanical Engineering Courses

437 Financial Mathematics II (LEC 3.0) Continuation of Math/Econ 337. Topics include martingales and measures, stopping times, discrete and continuous time finance, Brownian motion, Ito calculus, stochastic differential equations, Black-Scholes-Merton formula, numerical procedures. Prerequisite: Math 337 or Econ 337. (Co-listed with Econ 437)

440 Geometric Structures (LEC 3.0) Selected topics in non-Euclidean, solid, projective, and fractal geometry. Prerequisite: Math 330.

441 Geometric Structures Practicum (LEC 1.0) An instructional unit based on material learned in Math 440 will be designed by each student. These units will be class tested. The unit and results of class testing will be presented both in written and oral format. Prerequisite: Math 440.

451 Functions Of A Complex Variable I (LEC 3.0) Complex plane, complex function theory, elementary Riemann surfaces, conformal mapping, complex integration, infinite complex series and sequences, calculus of residues with applications. Prerequisite: Math 311.

452 Functions Of A Complex Variable II (LEC 3.0) Argument principle and consequences; harmonic functions and Dirichlet’s problem; infinite products; entire, meromorphic and rational functions; analytic continuation; symmetry principle; conformal mapping; functions of several complex variables. Prerequisite: Preceded by Math 451.

461 Harmonic Analysis I (LEC 3.0) Fourier series, norm and pointwise convergence of Fourier series, the conjugate and maximal functions, analytic functions in the unit disk and Hardy spaces, interpolation of linear operators and the Hausdorff-Young-Riesz Theorem, Sidon sets. Prerequisites: Math 315 and Math 351.

462 Harmonic Analysis II (LEC 3.0) Fourier integrals, almost-periodic functions on the real line, Banach algebras, Wiener’s Tauberian Theorem and the prime number theorem, the Paley-Wiener Theorems, band-limited functions and Shannon’s Theorem, the continuous wavelet transform, discrete wavelet transforms and frames, orthonormal bases of wavelets and multi-resolution analysis. Prerequisite: Must be preceded by Math 461.

465 Mathematical Programming (LEC 3.0) An introduction to linear optimization and its engineering applications; problem modeling, search-based optimization, the simplex method for solving linear problems, multi-objective optimization, discrete dynamic programming. Applications of optimization in the fields such as transportation, project management, manufacturing and facility location will be discussed. Prerequisites: Stat 213 or equivalent and (Eng Mg 382 or Math 203 or Math 208). (Co-listed with Eng Mgt 465)

475 Theory Of Partial Differential Equations (LEC 3.0) Classical wave, potential, and heat equations; classification into elliptic, parabolic, and hyperbolic types; existence and uniqueness proofs. Prerequisite: Math 309.

483 Special Functions (LEC 3.0) Infinite products, gamma and beta functions, asymptotic series, the hypergeometric function, generalized hypergeometric functions, Bessel functions, generating functions; polynomials of legendre, Hermite, Laguerre, and Jacobi; elliptic functions, theta functions, Jacobian elliptic functions. Prerequisites: Math 309 and 351.

485 Topology I (LEC 3.0) Topological spaces, uniform and quasi-uniform spaces, product and quotient spaces, separation properties and connected spaces, compactness. Prerequisite: Math 385.

486 Topology II (LEC 3.0) Metrizability conditions, the theory of convergence using both filters and nets, completions and compactifications, and papers from the recent literature. Prerequisite: Math 485.

490 Research (IND 0.0-15.0) Investigation of an advanced nature leading to the preparation of a thesis or dissertation.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Mechanical Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

304 Compliant Mechanism Design (LEC 3.0) Introduction to compliant mechanisms; review of rigid-body mechanism analysis and synthesis methods; synthesis of planar mechanisms with force/energy constraints using graphical and analytical methods; pseudo-rigid-body models; force-deflection relationships; compliant mechanism synthesis methods; and special topics, e.g. bistable mechanisms, constant-force mechanisms, parallel
mechanisms, and chain algorithm in design. Emphasis will be on applying the assimilated knowledge through a project on compliant mechanisms design. Prerequisite: Mech Eng 213, Civ Eng 110.

305 Lubrication (LEC 3.0) Development of basic principles of bearing analysis including manufacture and properties of lubricants, hydrodynamics and hydrostatic lubrication, journal and thrust bearings, ball and roller bearings, boundary considerations, and bearing materials. Prerequisite: Mc Eng 231.

306 Material Processing By High-Pressure Water Jet (LEC 3.0) Methods of generating high pressure water jets; standard equipment, existing techniques, and basic calculations. Application of water jets to materials cutting and mineral processing. Safety rules. The course will be supported by laboratory demonstrations. Prerequisite: Mc Eng 231 or undergraduate fluids course. (Co-listed with Aero Eng 306)

307 Vibrations I (LEC 3.0) Equations of motion, free and forced vibration of single degree of freedom systems and multidegree of freedom systems. Natural frequencies, resonance, modes of vibration and energy dissipation are studies. The vibration of continuous systems is introduced. Prerequisites: Mc Eng 211 and 213, or Ae Eng 213 and Math 204. (Co-listed with Aero Eng 307)

308 Rapid Product Design And Optimization (LEC 3.0) Product Life cycle design; Finding design solutions using optimization technique; Rapid product realization using rapid prototyping and virtual prototyping techniques. Prerequisite: Mc Eng 208.

309 Engineering Acoustics I (LEC 3.0) Introduction to acoustical theory and measurement with emphasis on mechanical and aerospace engineering applications. Plane and spherical wave propagation, resonators and filters, absorption, room acoustics, human response to noise, noise legislation, noise control. Use of common instrumentation in several projects. Prerequisites: Mc Eng 211 and 213, or Ae Eng 213 and Math 204. (Co-listed with Ae Eng 309)

311 Introduction To Continuum Mechanics (LEC 3.0) Introductory cartesian tensor analysis to aid in the development of the theory of a continuum. Kinematics of deformation, stress tensor, equations of motion, equations of mass and energy balance. Examples from specific material theories in solid and fluid mechanics. Prerequisites: Civ Eng 110, Math 204.

312 Introduction to Finite Element Analysis (LEC 3.0) Variational formulation of the governing equations. Finite element model, interpolation functions, numerical integration, assembly of elements and solution procedures. Applications to solid mechanics, fluid mechanics and heat transfer problems. Two-dimensional problems. Computer implementation and use of commercial finite element codes. Prerequisite: Mech Eng 208 or Aero Eng 253 or consent of instructor for majors that do not require either of these courses. (Co-listed with Aero Eng 352)

313 Intermediate Dynamics Of Mechanical And Aerospace Systems (LEC 3.0) Principles of dynamics are applied to problems in the design of mechanical and aerospace systems; basic concepts in kinematics and dynamics; dynamics of systems of particles; dynamics of rigid bodies, three-dimensional effects in machine elements; dynamic stability, theory and applications; methods of analytical dynamics. Prerequisite: Mc Eng 213 or Ae Eng 213. (Co-listed with Ae Eng 313)

314 Applications Of Numerical Methods To Mechanics Problems (LEC 3.0) Numerical solutions of statics, vibrations, and stability problems. Direct stiffness formulations are developed and user-oriented computer codes are used to solve practical structures problems. Computer graphics techniques are utilized to prepare data and display results. Prerequisites: Civ Eng 110; Mech Eng 160 or Aero Eng 160.

315 Concurrent Engineering I (LEC 3.0) Students will be introduced to the concurrent engineering approach to product development. They will learn to set up quantitative requirements and then use a quantitative rating process to identify the critical requirements relating to the desired product. The interaction between design, manufacturing, assembly, cost, and supportability will be covered. The students will form teams and practice the concurrent engineering process for simple products. Prerequisites: Mech Eng 213 or Aero Eng 231, and Civ Eng 110. (Co-listed with Aero Eng 315)

316 Concurrent Engineering II (LAB 3.0) Students will form groups and then using the electronic data based approach apply the concurrent engineering process to develop products. Areas to be covered are the customer, design, manufacturing, assembly, cost and supportability. Prerequisite: Ae Eng 315 or Mc Eng 315. (Co-listed with Ae Eng 316)

319 Advanced Thermodynamics (LEC 3.0) After a short review of classical thermodynamics, the elements of chemical reactions, chemical equilibrium, statistical thermodynamics, and the basic concepts of kinetic theory are presented. Prerequisite: Mech Eng 219. (Co-listed with Ae Eng 319)

320 Advanced Mechanics of Materials (LEC 3.0) Comprehensive insight into mechanics of materials. Topics to include: theories of failure, torsion of noncircular sections, shear flow and shear center, unsymmetric bending, bending of curved members, beams on elastic foundation and pressurization of thick walled cylinders. Prerequisites: Civ Eng 110, Math 204. (Co-listed with Aero Eng 320)

322 Introduction To Solid Mechanics (LEC 3.0) Review of basic concepts in continuum mechanics. Finite elasticity: some universal solutions for isotropic materials, application of special mechanical models. Linear elasticity: compatibility, stress functions, superposition, special examples such as extension, torsion, bending, and plane problems. Elements of plasticity. Prerequisite: E Mech 311. (Co-listed with Ae Eng 322)
323 Transport Phenomena In Manufacturing Processes (LEC 3.0) A study of the important role that transport phenomena (heat and mass transfer and fluid flow) play during various manufacturing processes including metal casting, joining and welding extrusion, forging, crystal growth, chemical deposition, and thermal spray deposition. Prerequisites: Mc Eng 225 and 231.

325 Intermediate Heat Transfer (LEC 3.0) Analytical study of conduction; theory of thermal radiation and applications; energy and momentum equations in convective heat transfer and review of empirical relations. Current topics are included. Prerequisite: Mc Eng 225. (Co-listed with Ae Eng 325)

327 Combustion Processes (LEC 3.0) Application of chemical, thermodynamic, and gas dynamic principles to the combustion of solid, liquid, and gaseous fuels. Includes stoichiometry, thermochemistry, reaction mechanism, reaction velocity, temperature levels, and combustion waves. Prerequisite: Mc Eng 221. (Co-listed with Ae Eng 327)

329 Smart Materials And Sensors (LEC 2.0 and LAB 1.0) Smart structures with fiber reinforced polymer (FRP) composites and advanced sensors. Multi-disciplinary topics include characterization, performance, and fabrication of composite structures; fiber optic, resistance, and piezoelectric systems for strain sensing; and applications of smart composite structures. Laboratory and team activities involve manufacturing, measurement systems, instrumented structures, and performance tests on a large-scale smart composite bridge. Prerequisites: Senior standing and Math 204. (Co-listed with Aero Eng 329, Elec Eng 329 and Civ Eng 318)

330 Applied Computational Methods (LEC 3.0) Detailed study of computational methods for efficient solution of selected fluids, structures, thermodynamics, and controls problems in aerospace and mechanical engineering. Besides basic numerical techniques, topics covered include gradient-based optimization and uncertainty quantification. Prerequisite: Comp Sci 53 or 73 or 78; Math 204. (Co-listed with Aero Eng 330)

331 Intermediate Thermofluid Mechanics (LEC 3.0) Derivation of Navier-Stokes equations, analytical solutions of viscous flows; flow in pipes, flow networks; intermediate treatment of boundary layer theory; micro-fluidics and MEMS; introduction to numerical methods for solving fluid flows; and, preliminary treatise on turbulence. Prerequisite: Mc Eng 231 or Ae Eng 231. (Co-listed with Ae Eng 331)

333 Internal Combustion Engines (LEC 3.0) A course dealing primarily with spark ignition and compression ignition engines. Topics include: thermodynamics, air and fuel metering, emissions and their control, performance, fuels, and matching engine and load. Significant lecture material drawn from current publications. Prerequisite: Mc Eng 221.

334 Stability Of Engineering Structures (LEC 3.0) Solution of stability problems with applications to columns, plates and shell structures. Torsional and lateral buckling of columns. Buckling under high temperatures. Effect of imperfections introduced by a technological process on stability. Design issues related to stability requirements. Prerequisites: Civ Eng 110; Math 204; and IDE 150 or Mech Eng 160 or Aero Eng 160. (Co-listed with Aero Eng 334)

335 Applied Energy Conversion (LEC 3.0) The study of the principles of energy conversion. Specific applications include fuel cells and other direct energy conversion devices used in plug-in hybrid electric vehicles. Prerequisite: Mech Eng 221.

336 Fracture Mechanics (LEC 3.0) Linear elastic and plastic mathematical models for stresses around cracks; concepts of stress intensity; strain energy release rates; correlation of models with experiment; determination of plane stress and plane strain parameters; application to design. Prerequisite: Civ Eng 110. (Co-listed with Aero Eng 336)

338 Fatigue Analysis (LEC 3.0) The mechanism of fatigue, fatigue strength of metals, fracture mechanics, influence of stress conditions on fatigue strength, stress concentrations, surface treatment effects, corrosion fatigue and fretting corrosion, fatigue of joints, components and structures, design to prevent fatigue. Prerequisite: Civ Eng 110. (Co-listed with Aero Eng 344)

339 Computational Fluid Dynamics (LEC 3.0) Introduction to the numerical solution of the Navier-Stokes equations, by finite difference methods, in both stream function-vorticity and primitive variable formulations. Course format emphasizes student development of complete computer programs utilizing a variety of solution methods. Prerequisites: Comp Sci 53 or 73 or 74; one course in fluid mechanics. (Co-listed with Ae Eng 339)

342 Experimental Stress Analysis II (LEC 2.0 and LAB 1.0) Acquaints the student with some techniques of experimental stress analysis. Topics include principal stresses, strain to stress conversion, transmission and reflection photelastic methods, Moire fringe methods, and analogies. Prerequisites: Civ Eng 110, Eng Mech 321. (Co-listed with Eng Mech 342, Aero Eng 342)

344 Interdisciplinary Problems In Manufacturing Automation (LEC 2.0 and LAB 1.0) The course will cover material necessary to design a product and the fixtures required to manufacture the product. Participants will gain experience with CAD/CAM software while carrying out an actual manufacturing design project. (Co-listed with Ch Eng 384, Eng Mg 344)

349 Robotic Manipulators And Mechanisms (LEC 2.0 and LAB 1.0) Overview of industrial applications, manipulator systems and geometry. Manipulator kinematics; hand location, velocity and acceleration. Basic formulation of manipulator dynamics and control. Introduction to machine vision. Projects include robot programming, vision-aided inspection and guidance, and system integration. Prerequisites: Cmp Sc 73, Mc Eng 213. (Co-listed with Ae Eng 349)
353 Computer Numerical Control Of Manufacturing Processes (LEC 2.0 and LAB 1.0) Fundamental theory and application of computer numerical controlled machine tools from the viewpoint of design principles, machine structural elements, control systems, and programming. Projects include manual and computer assisted part programming and machining. Prerequisite: Mc Eng 253.

354 Variational Formulations Of Mechanics Problems (LEC 3.0) Introduction and study of variational problems in classical dynamics and solid mechanics emphasizing the concepts of virtual work, minimum potential energy, and complementary energy. Variational inequalities. Prerequisites: Civ Eng 110; Math 204; and IDE 150 or Mech Eng 160 or Aero Eng 160. (Co-listed with Eng Mech 354)

355 Manufacturing Equipment Automation (LEC 2.0 and LAB 1.0) Manufacturing automation at the equipment level. Topics include sensors, actuators, and computer interfacing for manufacturing equipment, dynamic modeling and control of manufacturing equipment, interpolation, coordinated motion control, kinematic and geometric error modeling, and runout. Prerequisite: Mech Eng 279.

356 Design For Manufacture (LEC 3.0) Course covers the approach of concurrent product and process design. Topics includes: principle of DFM, New product design process, process capabilities and limitations, Taguchi method, tolerancing and system design, design for assembly and AI techniques for DFM. Prerequisites: Mc Eng 208, Mc Eng 253.

357 Integrated Product And Process Design (LEC 3.0) Emphasize design policies of concurrent engineering and teamwork, and documenting of design process knowledge. Integration of various product realization activities covering important aspects of a product life cycle such as "customer" needs analysis, concept generation, concept selection, product modeling, process development, DFX strategies, and end-of-product life options. Prerequisite: Eng Mgt 253 or Mech Eng 253. (Co-listed with Eng Mgt 354)

358 Integrated Product Development (LEC 1.0 and LAB 2.0) Students in design teams will simulate the industrial concurrent engineering development process. Areas covered will be design, manufacturing, assembly, process quality, cost, supply chain management, and product support. Students will produce a final engineering product at the end of the project. Prerequisite: Eng Mgt 354 or Mech Eng 357 or Mech Eng 253 or Mech Eng 308. (Co-listed with Eng Mgt 358)

360 Probabilistic Engineering Design (LEC 3.0) The course deals with uncertainties in engineering analysis and design at three levels – uncertainty modeling, uncertainty analysis, and design under uncertainty. It covers physics-based reliability analysis and reliability-based design, robustness assessment and robust design, their integration with design simulations, and their engineering applications. Prerequisite: Mech Eng 208 or Aero Eng 261. (Co-listed with Aero Eng 360)

361 Engineering Design Methodology (LEC 3.0) This course examines structured engineering design theory and methodologies for conceptual design and redesign of products. Topical coverage includes customer needs gathering, functional modeling, engineering specifications creation (OFD), concept generation, selection and design embodiment. Team work/hands-on projects emphasized. Prerequisite: At least Senior standing in engineering. (Co-listed with IDE 220)

363 Principles And Practice Of Computer Aided Design (LEC 2.0 and LAB 1.0) This course introduces the fundamentals of computer-aided design with emphasis on mathematical representations of curves and surfaces, modeling of solids, and graphic displays. Students will also practice with commercial CAD/CAM packages to gain experience and to help grasp fundamentals. Prerequisites: Cmp Sc 53, 73, or 74; Mc Eng 161; at least junior standing.

364 Introduction to Decision Analysis (LEC 3.0) This course is an introduction to decision analysis, a decision-making method under uncertainty. The course topics include probability theory, influence diagram, decision tree, subjective probability, sensitivity analysis, value of information, risk attitude, and utility models. Prerequisite: Stat 211 or Stat 213 or Stat 215 or Stat 217.

366 Solar Energy Technology (LEC 3.0) Introduction to the nature of solar radiation and associated thermal energy transfers. Methods of collecting and storing solar energy. Analysis and design of systems for utilizing solar energy, including heating and cooling. Prerequisite: Mech Eng 225, or consent of instructor for non-ME majors.

367 Heat Pump And Refrigeration Systems (LEC 3.0) The various methods used in the thermal design and analysis of both refrigeration and heat pumps systems are investigated. Various methods of producing heating and cooling are examined including vapor compression, absorption, air cycle, steam jet, and thermoelectric systems. Prerequisites: Mc Eng 221, 225.

370 Plasma Physics I (LEC 3.0) Single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory. Diffusion of plasma in electric and magnetic fields. Analysis of laboratory plasmas and magnetic confinement devices. Introduction to plasma kinetic theory. Prerequisite: Aero Eng 231 or Mech Eng 231 or Physics 221 or Nuc Eng 221 or Elec Eng 271. (Co-listed with Aero Eng 370, Nuc Eng 370, Physics 370)

371 Environmental Controls (LEC 3.0) Theory and applications of principles of heating, ventilating, and air conditioning equipment and systems; design problems. Physiological and psychological factors relating to environmental control. Prerequisites: Mech Eng 221 and accompanied or preceded by Mech Eng 225; or Mech Eng 227 and Civ Eng 230. (Co-listed with Arch Eng 371)
375 Mechanical Systems For Environmental Control (LEC 3.0) Analysis of refrigeration, heating, and air-distribution systems. Synthesis of environmental control systems. Prerequisites: Mech Eng 221 and 225; or Mech Eng 227 and Civ Eng 230.

378 Mechatronics (LEC 2.0 and LAB 1.0) This course will introduce students to the basics of mechatronics (i.e., the integration of mechanical, electrical, computer, and control systems). Students will learn the fundamentals of sensors and actuators for mechanical systems, computer interfacing, microcontrollers, real-time software, and control. Prerequisite: Mech Eng 279 or equivalent. (Co-listed with Aero Eng 378, Elec Eng 378 and Comp Eng 378)

381 Mechanical And Aerospace Control Systems (LEC 3.0) Synthesis of mechanical and aerospace systems to perform specific control functions. Response and stability are studied. Singular value analysis for stability margins is introduced. Prerequisite: Mech Eng 279 or equivalent. (Co-listed with Ae Eng 381)

382 Introduction To Composite Materials & Structures (LEC 3.0) Introduction to fiber-reinforced composite materials and structures with emphasis on analysis and design. Composite micromechanics, lamination theory and failure criteria. Design procedures for structures made of composite materials. An overview of fabrication and experimental characterization. Prerequisite: Civ Eng 110. (Co-listed with Aero Eng 311)

383 Industrial Applications Of Composite Materials Technology (LEC 3.0) Composite materials-industrial applications. Fibers and matrices. Fabrication and NDI. Lamination theory overview. Composite joints. Postbuckling. Fatigue and environmental effects. Testing and certification of composite structures. A majority of the presentations will be made by engineers in the industry. Prerequisite: Civ Eng 110. (Co-listed with Aero Eng 311)

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title. (Co-listed with Ae Eng 401)

407 Advanced Vibrations (LEC 3.0) Advanced treatment of discrete and continuous vibratory systems. Extensive use is made of matrix methods and operator notation. Special topics include: transmission matrices, relative coordinates, time dependent boundary conditions, approximate techniques for linear systems, nonlinear systems, and random excitations. Prerequisite: Mc Eng or Ae Eng 307. (Co-listed with Ae Eng 407)

409 Engineering Acoustics II (LEC 3.0) Expanded treatment of the theory of sound generation and propagation. The acoustic source, dipole, and quadrupole. Noise sources due to vibration and fluid flow. Sound propagation in the atmosphere. The transmission of sound in ducts. Propeller, fan, and jet noise. Prerequisite: Mc Eng or Ae Eng 309. (Co-listed with Ae Eng 409)

410 Seminar (LEC 0.0-1.0) Discussion of current topics. (Co-listed with Aero Eng 410)

413 Advanced Dynamics Of Machinery (LEC 3.0) Current problems in aerospace dynamics are treated using methods of analytical mechanics; gyroscopic phenomena; the calculus of variations; stability of systems, to include approximate techniques. Prerequisite: Mc Eng or Ae Eng 313. (Co-listed with Ae Eng 413)

422 Applied Linear Elasticity (LEC 3.0) Formulation and study of boundary-value problems in 2-D linear elastostatics: Equilibrium and compatibility. Stress function formulations in Cartesian and polar coordinates. Curved beam, wedge and plane contact problems. Dislocations and cracks. Thermoelasticity. Prerequisite: IDE 110, Math 325 (Co-listed with Aero Eng 422)

423 Viscous Fluid Flow (LEC 3.0) Fundamentals of viscous fluids for incompressible and compressible flows governed by Navier-Stokes equations; exact, approximate, and numerical solutions for steady and unsteady laminar flows; boundary layer theory for incompressible and compressible flows; stability and transition. Prerequisite: Mech Eng 331 or Aero Eng 331 or Mech Eng 339 or Aero Eng 339 or equivalent. (Co-listed with Aero Eng 423)

425 Heat Transfer By Conduction (LEC 3.0) A study of conduction heat transfer in solids by analytical and other methods. Prerequisite: Mc Eng or Ae Eng 325. (Co-listed with Ae Eng 425)

426 Micro-/Nano-Scale Thermophysics and Energy Transport (LEC 3.0) Introduces advanced statistical thermodynamics, nonequilibrium thermodynamics, kinetic theory, and quantum theory to analyze thermophysics and energy transport for microscale and nanoscale systems. Covers the fundamental concepts of photons, electrons, and phonons in the forms of waves and particles. Includes applications to ultrafast laser processing. Prerequisite: Mech Eng 325.

427 Heat Transfer By Convection (LEC 3.0) An analytical study of convective heat transfer in laminar and turbulent flows; forced convection,
natural convection, and mixed convection; combined heat and mass transfer; heat transfer with change of phase; instability of laminar flow; current topics in convection. Prerequisite: Mc Eng or Ae Eng 325. (Co-listed with Ae Eng 427)

429 Heat Transfer By Radiation (LEC 3.0) A study of the nature of thermal radiation; implications from electromagnetic theory; radiative characteristics of surfaces; enclosures; configuration factors; radiosity; specular and diffuse reflection; transfer in absorbing, emitting and scattering media; combined radiation conduction and convection; experimental methods. Prerequisite: Mc Eng or Ae Eng 325. (Co-listed with Ae Eng 429)

430 Theory Of Plates (LEC 3.0) General coverage of various approaches to plate problems and the application of these methods to practical problems. Special topics include applications to elastic foundations, buckling and energy methods in plate theory. Prerequisite: Math 325.

431 Gas Dynamics I (LEC 3.0) A critical analysis of the phenomena governing the flow of a compressible fluid; introduction to flow in two and three dimensions; Prandtl-Meyer expansions; small perturbations in subsonic and supersonic flows; method of characteristics. Prerequisite: Mc Eng or Ae Eng 331. (Co-listed with Ae Eng 431)

432 Theory Of Shells (LEC 3.0) General theory of stress analysis of shells based on topics in differential geometry and general elasticity theory. Theory is applicable to studies of the elastic behavior of flat plates and shells, buckling and post-duckling behavior of shells, and provides a basis for all shell theories which account for anisotropy, plasticity, creep, thermal strains, internal reinforcements, and transverse shearing deformations. Prerequisite: Math 325.

435 Turbulent Flows - Theory, Measurements and Modeling (LEC 3.0) Navier-Stokes equations; statistical description and mean-flow equations; behavior of free shear and wall bounded flows; the energy cascade; turbulence spectra and Kolmogorov hypothesis; measurement techniques: PIV, hot-wires, LDV; turbulence modeling for transport processes and closure schemes for RANS equations; evaluation of model constants, introduction to LES, DNS and hybrid-RANS. Prerequisite: Mech Eng 331 or Aero Eng 331 or Mech Eng 339 or Aero Eng 339 or equivalent. (Co-listed with Aero Eng 435)

437 Physical Gas Dynamics I (LEC 3.0) Features of high temperature gas flows including the development of the necessary background from kinetic theory, statistical mechanics, chemical thermodynamics and chemical kinetics. Equilibrium and non-equilibrium gas properties and gas flows are included. Prerequisite: Mc Eng or Ae Eng 331. (Co-listed with Ae Eng 437)

441 Advanced Energy Conversion (LEC 3.0) An analytical study of power producing systems with emphasis on new techniques and energy sources. All basic methods of energy conversion are covered from detailed physical descriptions to mathematical analysis. Included are advanced heat engines, nuclear power reactors, thermoelectric engines, magnetohydrodynamic devices, solar energy, fuel cells, and recent developments. Prerequisite: Mc Eng (or Ae Eng) 319, or Mc Eng (or Ae Eng) 325

447 Markov Decision Processes (LEC 3.0) Introduction to Markov Decision Processes and Dynamic Programming. Application to Inventory Control and other optimization and control topics. Prerequisite: Graduate standing in background of probability or statistics. (Co-listed with Comp Eng 457, Aero Eng 457, Eng Mgt 457 and Comp Sci 457)

453 Advanced Cnc Of Manufacturing Processes & Engineering Metrology (LEC 2.0 and LAB 1.0) Advanced treatment of Computer Numerical Control (CNC) part programming and machine tool metrology. Topics include mathematical modeling and characterization of machine tools and Coordinate Measuring Machines (CMMs); Measurement and analysis of dimensional accuracy, surface finish, precision, and uncertainty; Machine tool error modeling and compensation; Virtual Numerical Control (VNC) Machine Tool modeling, programming, simulation and process verification/optimization. Projects include advanced CNC programming and simulation. Prerequisite: Mc Eng 353.

455 Modeling And Control Of Manufacturing Processes (LEC 3.0) This course covers control-oriented modeling, simulation, and control of manufacturing processes. Topics include digital control, control system hardware, servomechanisms, interpolation, coordinated motion control, regenerative chatter, and control of machining and non-traditional processes. Control algorithms are implemented on a machining center. Prerequisites: Mc Eng 355, Mc Eng 381.

458 Adaptive Critic Designs (LEC 3.0) Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisite: Elec Eng 368 Neural Networks or equivalent (Computational Intelligence Comp Eng 301) (Co-listed with Comp Eng, Elec Eng, Aero Eng and Sys Eng 458).
495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Metallurgical Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

303 Metals Refining and Recycling of Materials (LEC 3.0) Survey of selected modern processes for the production of metals, the treatment of wastes, and recycling of metal values. Processes are studied with respect to raw materials, chemical reactions, energy consumption, process intensity, yield and environmental impact. Prerequisite: Cer Eng 259.

305 Nondestructive Testing (LEC 3.0) Principles and applications of various means of non-destructive testing of metallic materials. Radiological inspection methods, ultrasonic testing, magnetic methods, electrical and eddy current methods and others. Prerequisite: Physics 24 or 25. (Co-listed with Elec Eng 375)

306 Nondestructive Testing Laboratory (LAB 1.0) Application of radiological and ultrasonic methods of nondestructive testing of metallic materials. A radiographic X-ray units and ultrasonic equipment are used in the inspection of a variety of materials and manufactured parts. Prerequisite: Accompanied or preceded by Mt Eng 305.

307 Metals Casting (LEC 3.0) An advanced course in the materials and methods used in modern metals casting processes. Application of metallurgical principles to the casting of metals. Design of castings and metals casting mold features using commercial casting process simulation software. Prerequisite: Met Eng 221 or Mech Eng 153.

308 Metals Casting Laboratory (LAB 1.0) An advanced laboratory study of mold materials, metal flow, and cast metals. Emphasis is given to design of gating, risering, and ladle treatment techniques required for economical, highquality castings. Prerequisite: Accompanied or preceded by Mt Eng 307.
310 Seminar (IND 0.0-3.0) Discussion of current topics.
311 Metals Joining (LEC 2.0) Metals joining processes such as welding and brazing. Effects of welding on materials. Treatment and properties of welded joints. Welding defects and quality control. Prerequisite: Mt Eng 212 or 221.
313 Scanning Electron Microscopy (LEC 2.0 and LAB 1.0) A course in the theory and application of scanning electron microscopy and x-ray microanalysis. Topics considered are electron optics, image formation and analysis; x-ray generation, detection and analysis; and characterization of fracture surfaces. Prerequisites: Met Eng 217 and 218 or course in optical microscopy - consent of instructor required.
315 Metallurgical Process Design Principles (LEC 2.0) Application of mass, component and energy balances for metallurgical design. The fundamentals of engineering economic analysis will be examined and experimental design techniques will be introduced. Students will be prepared for the selection and planning of the subsequent design project. Prerequisite: Senior standing in Mt Eng.
316 Metallurgical Design Project (LAB 2.0) Student groups will undertake selected projects, which will represent a capstone design experience utilizing skills, understanding and data from previous courses. The faculty supervised open-ended design projects will involve a variety of tasks appropriate to the metallurgical engineer. Prerequisite: Mt Eng 315.
318 Principles for Microstructural Design (LEC 2.0) This course will introduce the basics of microstructural principles that can be used to design advanced materials. It will help students learn about the basic principles and microstructural design approaches. Prerequisites: At least junior standing, Met Eng 215; Met Eng 217 or equivalent.
321 Metal Deformation Processes (LEC 3.0) An introduction to metal deformation concepts followed by a study of various forming processes from both the analytical and applied viewpoints. Processes to include: forging, wire drawing, extrusion, rolling, sheet metal forming, and others. Prerequisite: Mt Eng 221.
329 Material Selection, Fabrication, And Failure (LEC 3.0) Factors governing the selection of materials for specific needs, fabrication, heat treatment, surface treatment, and other aspects in the production of a satisfactory component. Failure analysis and remedies. Lecture plus assigned problems. Prerequisites: Mt Eng 217, 218, 221.
331 Steels And Their Treatment (LEC 3.0) Industrially important ferrous alloys are described and classified. The selection of proper heat treatments to facilitate fabrication and to yield required service properties in steels suitable for various applications is considered. Prerequisites: Met Eng 217 and Met Eng 218.
332 Metals Treatment Laboratory (LAB 1.0) The students plan and perform experiments that illustrate heat treating processes and their effects on the properties and structure of commercial alloys. Prerequisite: Accompanied or preceded by Mt Eng 331.
333 Nonferrous Alloys (LEC 3.0) Structure and properties of nonferrous alloys (Al, Ti, Mg, Ni and Cu) are described. The role of processing and microstructure in the development of mechanical properties is emphasized. The prerequisites: Mt Eng 217 or Mt Eng 377.
340 Biomaterials I (LEC 3.0) This course will introduce senior undergraduate students to a broad array of topics in biomaterials, including ceramic, metallic, and polymeric biomaterials for in vivo use, basic concepts related to cells and tissues, host reactions to biomaterials, biomaterials-tissue compatibility, and degradation of biomaterials. Prerequisite: Senior undergraduate standing. (Co-listed with Cer Eng 340, Bio Sci 340, Chem Eng 340)
341 Nuclear Materials I (LEC 3.0) Fundamentals of materials selection for components in nuclear applications. Design and fabrication of UO2 fuel; reactor fuel element performance; mechanical properties of UO2; radiation damage and effects, including computer modeling; corrosion of materials in nuclear reactor systems. Prerequisites: Civ Eng 110; Nuc Eng 205; Nuc Eng 223; Met Eng 121. (Co-listed with Nuc Eng 341)
343 Nuclear Materials II (LEC 3.0) Extractive metallurgy of uranium, thorium, and zirconium. Equation of state of UO2 and fuel chemistry. LMFBR fuel and interaction of sodium and stainless steel. Materials for fusion and other advanced nuclear applications. Reprocessing of spent fuel and disposal. Prerequisite: Mt Eng 341.
350 Composites (LEC 3.0) An introduction to the structure, properties and fabrication of fiber and particulate composites. Prerequisites: Mt Eng 215 & 211 or Cr Eng 102 & 242.
352 International Engineering and Design (LEC 3.0) A multi-disciplinary engineering course focused on sustainable design and technology transfer to developing countries. Course includes elements of traditional capstone design classes. Experiential learning through competitions and/or field work is a major component of the class. Prerequisite: Senior standing, instructor approval. (Co-listed with Geo Eng 352 and Cer Eng 352)
353 Mineral Processing II (Mechanics and Design) (LEC 2.0 and LAB 1.0) Mineral particle mechanics of comminution, sizing, classification, concentration, filtering and thickening. Mill and equipment selection and design including flowsheet, development and plant assessment. Prerequisite: Min Eng 241. (Co-listed with Min Eng 353)
354 Electrical Systems and Controls for Materials (LEC 2.0 and LAB 1.0) This course will cover analysis of alternating and direct current circuits as experienced in the materials industry. Current, voltage, and power relationships in single and three-phase electrical power systems. Introduction to continuous and batch instrumentation including programmable logic controllers (PLCs) and computer interfacing for materials applications. Prerequisite: Physics 24.
355 Process Metallurgy Applications (LEC 3.0)
Application of thermodynamics to process metallurgy. Equilibrium calculations with stoichiometry and heat balance restrictions, phase transformations, and solution thermodynamics. Use of thermodynamic software to solve complex equilibria in metallurgical applications. Prerequisite: Cer Eng 259.

358 Steelmaking (LEC 3.0)
Introduction to the fundamentals and unit processes used to turn impure iron and scrap into steel. Includes desulfurization, BOF and electric furnace operations, ladle metallurgy, casting, and stainless steel manufacture. Prerequisite: Cer Eng 259.

359 Environmental Aspects of Metals Manufacturing (LEC 3.0)
Introduction to environmental aspects of metal extraction, melting, casting, forming, and finishing. Subjects include history of environmental movement and regulations permitting, risk analysis, disposal and recycling of metal manufacturing residues, environmental ethics, environmental technologies and case studies. Prerequisite: Junior/Senior standing.

361 Alloying Principles (LEC 3.0)
Basis for alloy design and property control. Predictions of phase stability, alloy properties and metastable phase possibilities; interfaces in solids and their role in phase transformations. Prerequisites: Mt Eng 217, 218.

363 Metal Coating Processes (LEC 3.0)
Introduction to the current technologies used to enhance metal performance, particularly corrosion resistance, by overlay coatings. Deposition processes are emphasized and the fundamentals of the behavior of the films in high technology and electronic materials applications is discussed. Prerequisite: Senior or Graduate Standing.

365 Microfabrication Materials And Processes (LEC 3.0)
An overview course on the materials and processes used to fabricate integrated circuits, microelectromechanical systems (MEMS), interconnect substrates and other microelectronic components from starting material to final product. The emphasis will be on the influence of structure and processing on the electrical, mechanical, thermal, and optical properties. Prerequisites: Chem 1 or equivalent; Senior or Graduate Standing.

367 Introduction to Particulate Materials (LEC 3.0)
Powder metallurgy and ceramic components, filters, catalysts, nanomaterials, vitamins and more depend strongly on particulate, or powder, characteristics and processing. Aspects of powder fabrication, characterization, safety, handling, component fabrication, secondary processing, and applications will be covered. Prerequisite: Met Eng 121.

375 Metallurgical Failure Analysis (LEC 3.0)
Application of the principles of manufacturing and mechanical metallurgy for the analysis of failed components. Analytical techniques such as Scanning Electron Microscopy, Optical Metallography, and High Resolution Photography are used to characterize microstructure and fractographic features. In addition, appropriate methods to gather data, assimilate it, and draw conclusions from the data such that it will stand up in a court of law will be addressed. Prerequisite: Senior or Graduate Student standing.

377 Principles Of Engineering Materials (LEC 3.0)
Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Ae Eng 377, Ch Eng 347, Physics 377, Cr Eng 377)

381 Corrosion And Its Prevention (LEC 3.0)
A study of the theories of corrosion and its application to corrosion and its prevention. Prerequisite: Chem 243 or Cer Eng 259. (Co-listed with Chem Eng 381)

385 Mechanical Metallurgy (LEC 3.0)
Elastic and plastic behavior of metallic single crystals and polycrystalline aggregates. Resulting changes in mechanical properties are considered. Included are applications to metal fabrication. Prerequisites: Met Eng 215, 216, Civ Eng 110.

390 Undergraduate Research (IND 0.0-6.0)
Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0)
Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0)
This course is designed to give the department an opportunity to test a new course. Variable title.

403 High Temperature And Corrosion Resistant Alloys (LEC 3.0)
Fabrication and use of nickel, titanium, and refractory metal based alloys for use at high temperatures or in chemically corrosive environments. Properties and strengthening mechanisms of these alloys. Theory of high temperature oxidation and corrosion and design of alloys to prevent them. Prerequisites: Met Eng 217, 218.

404 Recent Advances In Extractive Metallurgy (LEC 2.0)
A survey of extractive processes recently developed in the light of modern requirements with respect to raw materials, product quality, environmental impact, energy consumption, capital cost and process control. Prerequisite: Mt Eng 355.

414 Transmission Electron Microscopy (LEC 2.0 and LAB 1.0)
A course in the theory and application of transmission electron microscopy. Topics considered are electron optics, image formation, defect structures, specimen preparation, contrast theory and electron diffraction. Prerequisite: Mt Eng 313.

421 Ferrous Metals Casting (LEC 3.0)
An advanced study of the metallurgy of cast irons and net shape cast steel alloys. Includes theories of nucleation and growth in gray, nodular, compacted graphite and
Mining Engineering Courses

300 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

302 **Computer Aided Mine Design** (LEC 2.0 and LAB 1.0) Project-based mine planning and design course. Engineering design process applied to computer-aided mine planning and design. Mine layouts, production planning, and materials scheduling optimization. Prerequisite: Min Eng 225 or graduate standing.

303 **Aggregate Materials Sizing and Characterization** (LEC 2.0 and LAB 1.0) Geological formation of aggregates; aggregate properties and their measurements; aggregates for specific end-user applications; specifications and standards; processing (crushing, screening, classification, and washing); plant design and flow sheet analysis; quality control and assurance. Prerequisite: Min Eng 241.

304 **Advanced Aggregate and Quarrying** (LEC 3.0) Advanced coverage of topics on the stone and aggregate industry, including surface and underground operations, plant equipment, economics, marketing, transportation, and environmental topics. The course will include at least one field trip and a design project. Prerequisite: Min Eng 215, co-requisite: Civ Eng 216.

306 **Material Processing By High-Pressure Water Jet** (LEC 3.0) Methods of generating high pressure water jets; standard equipment, existing techniques and basic calculations. Applications of water jets to materials cutting and mineral processing. Safety rules. The course will be supported by laboratory demonstrations. (Co-listed with Mc Eng 306)

307 **Principles Of Explosives Engineering** (LEC 2.0 and LAB 1.0) Theory and application of explosives in the mining industry; explosives, initiating systems, characteristics of explosive reactions and rock breakage, fundamentals of blast design, drilling and blasting, regulatory and safety considerations. Prerequisites: Min Eng 151; accompanied or preceded by Civ Eng 215 or Geology 220 or Geology 125; Successful background check. (Co-listed with Exp Eng 307)

311 **Mine Plant Management** (LEC 2.0) Optimization of mine plant and equipment performance. Availability, utilization and reliability of equipment; matching equipment and plant to minesite specific conditions; maintenance planning, scheduling and control; parts and materials supply systems; mine information and management systems. Basics of mine automation and robotics. Prerequisite: Senior standing or consent of instructor.

312 **Ore Reserve Analysis And Geostatistics** (LEC 2.0 and LAB 1.0) An introduction to principles of geostatistics; theory of spatially correlated random variables, variance and co-variiances and their
application on the evaluation of mineral resources, ore reserve estimation, strategic exploration, and production planning. Real case studies from mining industry will be presented. Prerequisites: Math 204, Stat 213.

315 Advanced Mine Health and Safety (LEC 3.0) A detailed study of health and safety principles, practices, analyses, regulations, issues and technology in the mining industry. Prerequisite: Min Eng 151.

318 Mine Atmosphere Control (LEC 2.0 and LAB 1.0) Fundamentals of mine ventilation, including the principles of airflow, control of gases, dust, and temperature, methane drainage, mine fans, network theory, computer network simulation, and economics of airflow, with emphasis on analysis, systems design and practical application. Prerequisite: Cv Eng 230.

322 Mine Management (LEC 2.0) Theory and practice of mine management, including basic managerial functions, management theories, communication skills, motivation, leadership, organization, maintenance management, managerial decision making, cost control, labor relations, government relations, ethics, with emphasis in presentation skills. Prerequisite: Completion of 100 credits in Mining Engineering curriculum.

326 Surface Mining Methods And Equipment (LEC 3.0) Principles of planning, constructing, and operating economically viable surface mines. Cost effective mining methods: placer mining, strip mining, open pit mining, quarrying. Selection of equipment for surface mining operations. Optimization of mine performance. Field trip required. Prerequisites: Min Eng 215; Min Eng 225; Min Eng 270; coreq. Min Eng 331.

331 Rock Mechanics (LEC 2.0 and LAB 1.0) Applications of the fundamental principles of mechanics to engineering problems of equilibrium, strength and stiffness of rock materials. Review of in-situ stresses, laboratory and field instrumentation, rock and rockmass properties, pillar design, roof span design, rock reinforcement, surface subsidence, slope stability, and violent failures. Field trip required. Prerequisites: IDE 140, or Civ Eng 50 and IDE 150; and Geology 220.

332 Soils and Overburden Materials for Mining Engineering (LEC 2.0) Physical and mechanical properties of soils and overburden materials. Soils and overburden characterization for reclamation and mine closure and overburden blasting. Soil failure modes and slope stability for surface mine layouts, waste dumps, tailings and earth dams, and foundations for heavy mining machinery. Prerequisites: IDE 140, or Civ Eng 50 and IDE 150.

342 Environmental And Natural Resource Economics (LEC 3.0) Optimum use of replenishable and non-replenishable resources, public goods and common resources, externalities, private vs. public costs, and quality of the environment; emphasis on public policy related to environmental and natural resource economics. Prerequisite: Econ 221. (Co-listed with Econ 340)

343 Coal Mine Development And Production (LEC 3.0) An in-depth study of all aspects of coal mining, including an overview of coal industry, reserves and geology, planning and development of coal mines, surface and underground mechanized methods of face preparation, equipment, coal extraction, handling and preparation as practiced in the United States. Prerequisite: Accompanied or preceded by Mi Eng 217.

344 Coal Preparation (LEC 2.0 and LAB 1.0) Coal properties, sampling, testing, breaking, sizing, cleaning and dewatering. Disposal of refuse. Prerequisites: Min Eng 241 and senior standing.

345 Strata Control (LEC 3.0) A detailed review of artificial ground support, both above and below ground, including slope stabilization techniques and shaft and tunnel liner design. The use of shotcrete, roofbolts, and solid liners and the principles of underground longwall and room and pillar mine support. Longwall and hydraulic mining practice is covered. Prerequisite: Min Eng 331.

350 Blasting Design And Technology (LEC 2.0 and LAB 1.0) Advanced theory and application of explosives in excavation; detailed underground blast design; specialized blasting including blast casting, construction and pre-splitting. Introduction to blasting research. Examination of field applications. Prerequisites: Min Eng 307. Student must be at least 21 years of age. Successful background check. (Co-listed with Exp Eng 350)

352 Mineral Processing I (Flotation and Hydrometallurgy) (LEC 2.0 and LAB 1.0) Forth flotation including mineral surfaces, double layer theory, zeta potential, hydrophobicity, adsorption, collectors, frothers, modulation, kinetics, and sulphide and acid flotation systems. Hydrometallurgy including leaching, ion exchange and liquid/liquid extraction. Prerequisite: Min Eng 241.
353 Mineral Processing II (Mechanics and Design) (LEC 2.0 and LAB 1.0) Mineral particle mechanics of comminution, sizing, classification, concentration, filtering and thickening. Mill and equipment selection and design including flowsheet, development and plant assessment. Prerequisite: Min Eng 241. (Co-listed with Met Eng 353)

355 Energy Economics (LEC 3.0) Market structure. World resource development. Supply and demand analysis on energy production and consumption within domestic and global settings. Prerequisite: Econ 221. (Co-listed with Econ 355)

376 Environmental Aspects Of Mining (LEC 3.0) Permitting: the legal environment of reclamation and environmental impact assessment; post-mining land-use selection and mine planning for optimum reclamation of all mines: metal, nonmetal, and coal; unit operations of reclamation: drainage, backfill, soil replacement, revegetation, maintenance, etc. Prerequisites: Ge Eng 50; Mi Eng 324 and 326 or prereq./coreq. Cv Eng 215. (Co-listed with Ge Eng 376)

383 Tunneling & Underground Construction Techniques (LEC 2.0 and LAB 1.0) Cover both mechanical excavation and conventional excavation techniques to underground tunneling and construction. The emphasis will be on equipment selection and prediction of performance expected of the equipment. Ground control systems will be covered as technology emerges. Excavation methods and support of large caverns, often found in civil structures, will also be discussed. A limited focus will be on underground construction specifications and underground advance rate and cost estimation techniques. Prerequisites: Min Eng 331, Min Eng 324 or Civ Eng 215, Civ Eng 216 or Geo Eng 371.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

392 Mine Design Project I (LAB 1.0) Formation of mine design project teams and acquisition of project data from industry. Geostatistical methods for ore reserves estimation. Develop complete project schedule and milestones for executing the project tasks in Min Eng 393 (Mine Design Project II). Set up database for Min Eng 393 and interact with selected mine design software packages.

393 Mine Design Project II (LEC 1.0 and LAB 3.0) Capstone project with written and oral presentations. Includes mine design and optimization, production plan, equipment and flowsheet design based on geology, resources/reserves, geotechnics, hydrology and hydro-geology. Project also incorporates markets, environmental and permitting, mine-mill organization, support facilities, economic and risk analyses. Prerequisite: Min Eng 392 and completion of 110 hours in the Mining Engineering Curriculum.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

402 Environmental Controls For Blasting (LEC 2.0 and LAB 1.0) Advanced blast mechanics; overbreak control including comprehensive coverage of perimeter and smoothwall specialist blasting techniques and geotechnical factors affecting blast vibration, limits analysis monitoring and control; air blast control including limits, monitoring and atmospheric and topographic effects. Prerequisites: Min Eng 307, Successful background check. (Co-listed with Exp Eng 402)

403 Optimization Applications In Mining I (LEC 3.0) Mining applications of deterministic optimization techniques are covered, including linear, integer, mixed-integer, dynamic, unconstrained and constrained nonlinear, and heuristic programming. Prerequisite: Graduate standing or consent.

404 Advanced Mining Systems (LEC 3.0) Principles of design for the development and production of hard rock mineral deposits that require integrated surface and underground mining methods. Cost considerations leading to optimization. Terminal feasibility report required. Prerequisites: Mi Eng 224, 226 and 393.

407 Theory Of High Explosives (LEC 3.0) Study of the application of chemical thermodynamics and the hydrodynamic theory to determine the properties of high explosives; application of detonation theory to steady-state detonations in real explosives; application of the above to the blasting action of explosives. Prerequisite: Successful background check and Graduate Standing. (Co-listed with Exp Eng 407)

409 Mining Property Feasibility Studies And Evaluation Procedure (LEC 2.0 and LAB 1.0) A systematic phased approach is presented, designed to increase the level of confidence and accuracy of estimates, moving from exploration through to a "bankable" study. Liability, ethics, resource/reserves, political/social/investment risk, economic parameters, and due diligence are discussed. Prerequisite: Mi Eng 270 or Geo 294 or Cv Eng 241 or Eng Mg 208 or Mi Eng 376 or Geop 382.

410 Seminar (RSD 1.0) Discussion of current topics.

411 Research Methods (LEC 3.0) Foundations, dimensions, and methods for designing and investigating research problems in Mining Engineering. Focus on fundamental and applied research, research methods, literature review, experimental design and experimentation, dissertation composition, concepts of originality and intellectual property. Prerequisite: Graduate standing.

412 Mine Management II (LEC 3.0) The course covers advanced concepts in managing mine operations. Topics to be covered include TQM, statistical process control, benchmarking, KPI, standards and standardization, ISO 9000: Quality Control, ISO
14000: Environmental systems, OHSAS 18000. Management systems, SA8000, Social Accountability and others. Prerequisite: Consent of instructor.

415 Advanced Mine Health And Safety Design (LEC 3.0) Principles of design of mining operations with emphasis on the health and safety of the worker. Prerequisite: Graduate standing.

416 Advanced Mineral Engineering Design II (LEC 1.0 and LAB 2.0) Incorporation of principles developed in Mining 415 in advanced design projects for mineral plants and systems, with emphasis on environmental protection, health, and safety. Prerequisite: Mi Eng 415.

418 Mine Atmospheric Control II (LEC 3.0) Climatic measurements and temperature precalculations, emergency plans for fan failures and mine fires, mine air contaminants, mine noises, mine dust, refrigeration and cooling plant layout, radiation control. Prerequisite: Mi Eng 318.

432 Advanced Rock Mechanics (LEC 3.0) Advanced topics in static and dynamic rock mechanics; elasticity theory, failure theories and fracture mechanics applied to rock; stress wave propagation and dynamic elastic constants; rock mass classification methods for support design; pillar design in coal and metal mines; introduction to numerical models. Prerequisite: Mi Eng 312.

433 Rock Mechanics IV (LEC 3.0) Advanced topics in dynamic rock mechanics. Stress wave propagation in the earth, dynamic elastic constants in isotropic and anisotropic rock, Hopkinson bar impact analysis, spallation and radial fracturing caused by stress pulses, shock wave generation in rock by explosives, shock wave propagation and effects. Prerequisite: Mi Eng 331 or Cv Eng 215.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

491 Internship (IND 0.0-15.0) Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Nuclear Engineering Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

303 Reactor Physics I (LEC 3.0) Study of neutron interactions, fission, chain reactions, neutron diffusion and neutron slowing down; criticality of a bare thermal homogeneous reactor. Prerequisite: Nu Eng 205.

304 Reactor Laboratory I (LEC 1.0 and LAB 1.0) Acquaints the student with neutron flux measurement, reactor operation, control rod calibration, reactor power measurement and neutron activation experiments. Experiments with the thermal column and neutron beam port are also demonstrated. Prerequisites: Nu Eng 204, 205.

306 Reactor Operation II (LAB 1.0) The operation of the training reactor. The program is similar to that required for the NRC Reactor Operator's license. Students from other disciplines will also benefit from the course. Prerequisite: Nu Eng 105, 206.

307 Nuclear Fuel Cycle (LEC 3.0) Nuclear fuel reserves and resources; milling, conversion, and enrichment; fuel fabrication; in-and-out-of core fuel management; transportation, storage, and disposal of nuclear fuel; low level and high level waste management; economics of the nuclear fuel cycle. Prerequisite: Nu Eng 205.

308 Reactor Laboratory II (LEC 1.0 and LAB 1.0) A continuation of Nuclear Engineering 304 with experiments of a more advanced nature. Prerequisite: Nu Eng 304.

309 Licensing Of Nuclear Power Plants (LEC 2.0) The pertinent sections of the Code of Federal Regulations, the Nuclear Regulatory Commission's Regulatory Guides and Staff Position Papers, and other regulatory requirements are reviewed. Safety analysis reports and environmental reports for specific plants are studied.

310 Seminar (RSD 0.0-6.0) Discussion of current topics. Prerequisite: Senior standing.

311 Reactor Physics II (LEC 3.0) Analytic and computer based methods of solving problems of reactor physics. Prerequisites: Nu Eng 303, Cmp Sc 228.

312 Nuclear Radiation Measurements and Spectroscopy (LEC 2.0 and LAB 1.0) Contemporary radiation detection theory and experiments with high resolution gamma-ray spectroscopy, solid state detectors, neutron detection and conventional gas filled detectors. Neutron activation analysis of unknown material, statistical aspects of nuclear measurements. Prerequisite: Nuc Eng 205.
Nuclear Engineering Courses - 191

315 Space Nuclear Power And Propulsion (LEC 3.0) A study of the design, operation and application of radioisotope power generators and nuclear reactors for space power and propulsion systems used on both manned and unmanned missions. Prerequisites: Nuc Eng 303 and Nuc Eng 319.

317 Two-phase Flow in Energy Systems - I (LEC 3.0) It is an introductory course for both undergraduate or graduate students who are interested in the application of two-phase flow in energy systems. It will acquaint students with governing equations for both single-phase and two-phase fluid flow, state-of-the-art analytical methods and various two-phase flow phenomena related to energy systems. Prerequisite: Nuc Eng 221 or Chem Eng 231 or Mech Eng 231.

319 Nuclear Power Plant Systems (LEC 3.0) A study of current nuclear power plant concepts and the environmental economics and safety considerations affecting their design. Includes such topics as: thermodynamics, thermal hydraulics, and mechanical and electrical aspects of nuclear power facilities. Prerequisites: Nu Eng 205 and accompanied or preceded by Nu Eng 223.

321 Nuclear Power Plant Systems II (LEC 3.0) A complete design of a nuclear system (e.g., a fission or fusion nuclear reactor plant, a space power system, a radioactive waste disposal system). Prerequisites: Nu Eng 223, 303, 319, preceded or accompanied by Nu Eng 341.

322 Nuclear System Design I (LEC 1.0) A preliminary design of a nuclear system (e.g., a fission or fusion nuclear reactor plant, a space power system, a radioactive waste disposal system). Prerequisites: Nu Eng 223, 303, 319, preceded or accompanied by Nu Eng 341.

323 Nuclear System Design II (LEC 3.0) A complete design of a nuclear system (e.g., a fission or fusion nuclear reactor plant, a space power system, a radioactive waste disposal system). Prerequisite: Nu Eng 232.

333 Applied Health Physics (LEC 3.0) Radiation sources; external and internal dosimetry; biological effects of radiation; radiation protection principles; regulatory guides; radioactive and nuclear materials management. Prerequisite: Nu Eng 203 or Physics 107.

341 Nuclear Materials I (LEC 3.0) Fundamentals of materials selection for components in nuclear applications, design and fabrication of UO2 fuel; reactor fuel element performance; mechanical properties of UO2; radiation damage and effects, including computer modeling; corrosion of materials in nuclear reactor systems. Prerequisites: Civ Eng 110; Nuc Eng 205; Nuc Eng 223; Met Eng 121. (Co-listed with Met Eng 341)

345 Radioactive Waste Management And Remediation (LEC 3.0) Sources and classes of radioactive waste, long-term decay, spent fuel storage, transport, disposal options, regulatory control, materials issues, site selection and geologic characterization, containment, design and monitoring requirements, domestic and foreign waste disposal programs, economic and environmental issues, history of disposal actions, and conduct of remedial actions and clean up. Prerequisite: Math 204. (Co-listed with Geo 345)

351 Reactor Kinetics (LEC 3.0) Derivation and solutions to elementary kinetics models. Application of the point kinetics model in fast, thermal reactor dynamics, internal and external feedback mechanism. Rigorous derivation and solutions of the space dependent kinetics model fission product and fuel isotope changes during reactor operation. Prerequisite: Nu Eng 205.

361 Fusion Fundamentals (LEC 3.0) Introduction to the plasma state, single particle motion, kinetic theory, plasma waves, fusion, power generation, radiation mechanisms, inertial confinement and fusion devices, including conceptual fusion power plant designs. Prerequisite: Preceded or accompanied by Math 204.

370 Plasma Physics I (LEC 3.0) Single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory. Diffusion of plasma in electric and magnetic fields. Analysis of laboratory plasmas and magnetic confinement devices. Introduction to plasma kinetic theory. Prerequisite: Aero Eng 231 or Mech Eng 231 or Physics 221 or Nuc Eng 221 or Elec Eng 271. (Co-listed with Aero Eng 370, Mech Eng 370, Physics 370)

381 Probabilistic Risk Assessment I (LEC 3.0) A study of the techniques for qualitative and quantitative assessment of reliability, safety and risk associated with complex systems such as those encountered in the nuclear power industry. Emphasis is placed on fault tree analysis. Prerequisite: Nu Eng 205.

390 Undergraduate Research (IND 0.0-6.0) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

403 Advanced Reactor Physics (LEC 3.0) Transport and diffusion theory; multigroup approximation; criticality calculations; cross-section processing;
buildup and depletion calculations; delayed neutrons and reactor kinetics; lattice physics calculations; full core calculations; analysis and measurement of reactivity coefficients. Prerequisite: Math 325.

405 Linear Transport Theory (LEC 3.0) Monoenergetic Boltzmann equation for neutral particles by the method of singular eigen-functions and polynomial expansions. Prerequisites: Nu Eng 303, Math 358.

407 Advanced Nuclear Thermal Hydraulics (LEC 3.0) Integrated treatment of thermodynamics and advanced mass, momentum and energy transport in solids and fluids; velocity and temperature distributions in laminar and turbulent flow; flow and thermal analysis with applications to nuclear engineering systems. Prerequisite: Math 325.

410 Seminar (RSD 0.0-6.0) Discussion of current topics.

411 Computational Methods In Nuclear Engineering (LEC 3.0) Numerical solution of the neutron diffusion and transport equations utilizing the computer. The Sn and Pn methods are studied in detail. Prerequisites: Nu Eng 305 and Cmp Sc 218.

421 Advanced Nuclear Reactor Design (LEC 3.0) Complete design of a nuclear power reactor, including analysis of reactor physics and engineering; layout and design of primary and secondary cooling systems, pressure vessel and thermal shields, control systems; introduction to the economics of nuclear power. Prerequisites: Nu Eng 311 and 321.

423 Nuclear Reactor Safety (LEC 3.0) Study of safety criteria; reactor characteristics pertinent to safety; reactor transient behavior; loss of coolant accident analysis; emergency core cooling; fuel behavior during accident conditions; reactor risk analysis; current reactor safety issues. Prerequisites: Nu Eng 303 and 321.

431 Radiation Shielding (LEC 3.0) Radiation sources; interactions of radiation with matter; dosimetry and radiation protection guidelines. The particle transport equation and methods of solving it; the Monte Carlo Method; special computational methods for neutron and gamma attenuation. Computer codes used in shielding. Shielding materials, shield design. Prerequisite: Nu Eng 303.

441 Effects Of Radiation On Solids (LEC 3.0) The theories of the interaction of nuclear radiation with matter. Experimental approaches to radiation studies, including the sources and dosimetry. Nature and properties of crystal imperfections. The influence of radiation on physical, mechanical and surface properties of metals and alloys. Radiation effects on materials other than those incorporated in nuclear reactors. The annealing of defects. Prerequisite: Mt Eng 341.

481 Probabilistic Risk Assessment II (LEC 3.0) A continuation of Nu Eng 381 with emphasis on reliability, importance, availability and frequency of occurrence. Advanced topics of phased mission analysis and dynamic fault tree analysis will be considered. The use of fault tree results with respect to risk calculations will be studied. Prerequisite: Nu Eng 381.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

491 Internship (IND 0.0-15.0) Students working toward a doctor of engineering degree will select with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Petroleum Engineering Courses

300 Special Problems (IND 1.0-3.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 1.0-3.0) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Offshore Petroleum Technology (LEC 3.0) An introduction to the development of oil and gas fields offshore, including offshore leasing, drilling, well completions, production facilities, pipelines, and servicing. Subsea systems, and deepwater developments are also included. This course is suitable for mechanical, electrical and civil engineering students interested in ultimately working offshore.

303 Environmental Petroleum Applications (LEC 3.0) This course is a study of environmental protection and regulatory compliance in the oil and gas industry. The impact of various environmental laws on drilling and production operations will be covered. Oilfield and related wastes and their handling are described.
Federal, state and local regulatory agencies are introduced, and their role in permitting and compliance monitoring is presented. Legal and ethical responsibilities are discussed. Prerequisite: Chem 1.

308 Applied Reservoir Simulation (LEC 3.0) Simulation of actual reservoir problems using both field and individual well models to determine well spacing, production effects of secondary and enhanced recovery processes, future rate predictions and recovery, coning effects, relative permeability adjustments and other history matching techniques. Prerequisite: Pet Eng 241.

310 Seminar (RSD 1.0) Discussion of current topics. (Course cannot be used for graduate credit). Prerequisite: Senior standing in Pe Eng. (Co-listed with Geology 310, Geo Eng 310)

313 Drilling and Well Design (LEC 2.0 and LAB 1.0) This course covers drilling fluids, including mixing and analysis of rheological properties; pressure loss calculations; casing design; well cementing; pore pressure and geomechanical considerations in drilling; completion equipment; and completion design. Prerequisite: Preceded or accompanied by Civ Eng 230.

314 Advanced Drilling Technology (LEC 3.0) In-depth studies of directional well planning and bottom hole assemblies, hole problems and wellbore stability in deviated wells; computer aided drilling optimization and drill bit selection for directional wells. Field trip required. Prerequisite: Pet Eng 313.

316 Well Performance and Production Systems (LEC 2.0 and LAB 1.0) Introduction to the producing wellbore system; inflow performance relationships, effect of formation damage on well flow, nodal systems analysis; perforating methods and their effect on inflow; stimulation treatments to enhance well performance. Introduction to well completions, diagnostics and well servicing. Overview of production systems. Prerequisite: Preceded or accompanied by Pet Eng 241.

323 Artificial Lift (LEC 3.0) This course is a study of artificial lift methods used to produce liquids (oil/water) from wellbores. Methods covered include sucker rod (piston) pumps, electric submersible pumps, gas lift, hydraulic lift and plunger lift. Prerequisite: Pet Eng 316.

325 Well Completion Design (LEC 3.0) An overview of the hardware, fluids and processes employed in completing oil and gas wells. Examination of types of well completions and considerations in their design. Introduction to downhole mechanics and tubing movement and stress calculations. Prerequisite: Pet Eng 241.

329 Applied Petroleum Reservoir Engineering (LEC 3.0) Quantitative study of oil production by natural forces, gas cap, water influx, solution gas, etc.; material balance equations, study of gas, non- retrograde gas condensate, and black oil reservoirs. Predictive calculations of oil recovery from different reservoir types. Prerequisites: Pet Eng 241 and 242.

338 Finite Element Analysis with Applications in Petroleum Engineering (LEC 3.0 and LAB 1.0) This course introduces finite element analysis (FEA) methods and applications of FEA in subsurface engineering. The course is intended to provide a fundamental understanding of FEA software and experience in creating meshes for petroleum reservoirs or other subsurface features. Prerequisites: Pet Eng 241, Geology 220, and Math 204.

341 Well Test Analysis (LEC 2.0 and LAB 1.0) Causes of low well productivity; analysis of pressure buildup tests, drawdown tests, multi-rate tests, injection well fall off tests, and open flow potential tests; design of well testing procedures. Prerequisite: Pet Eng 241.

347 Petroleum Engineering Design (LEC 3.0) Senior capstone design project(s) based on industry data. Application of reservoir engineering: drilling and production engineering principles to evaluate and solve an industry problem such as a new field development, evaluation of an existing reservoir asset, or analysis of field re-development. Prerequisites: Pe Eng 241, Pe Eng 316, and senior standing.

357 Petroleum Economics and Asset Valuation (LEC 3.0) Uncertainty in the estimation of oil and gas reserves; tangible and intangible investment costs; depreciation; evaluation of producing properties; federal income tax considerations; chance factor and risk determination. Petroleum economic evaluation software is introduced. Prerequisites: Pet Eng 241, Econ 121 or Econ 122.

360 Natural Gas Engineering (LEC 3.0) Gas reserves estimation, deliverability, and future production performance prediction. Deliverability testing of gas wells including isochronal, flow after flow, drawdown and buildup. Gasfield development and underground storage. Gas production metering gauging and transmission. Prerequisite: Preceded or accompanied by Pe Eng 241.
366 **Mechanical Earth Modeling** (LEC 3.0) This course introduces the work process necessary to create the Mechanical Earth Model's principle components, formation in-situ stress and strength. 1-D modeling methods are reviewed and extended to 3-D; and the integration of MEM with well design is shown. An MEM model will be created and compared to actual field results. Prerequisite: Pet Eng 241 or Geology 220 or Min Eng 232.

400 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

408 **Advanced Applied Reservoir Simulation** (LEC 3.0) Advanced simulation of actual reservoir problems using both field and individual well models to determine well spacing, production effects of secondary and enhanced recovery processes, future rate predictions and recovery, coning effects, relative permeability adjustments and other history matching techniques. Prerequisite: Pe Eng 320.

410 **Seminar** (RSD 0.0-6.0) Discussion of current topics.

417 **A Survey Of Improved Recovery Processes** (LEC 3.0) An overview of current advanced recovery methods including secondary and tertiary processes. An explanation of the primary energy mechanism and requirements of these methods and an analysis of laboratory results and their subsequent field applications. Prerequisite: Pe Eng 335.

437 **Advanced Reservoir Engineering I** (LEC 3.0) Advanced study of producing mechanisms. Prerequisites: Pe Eng 308 and Pe Eng 341.

438 **Advanced Reservoir Engineering II** (LEC 3.0) Flow through porous media: derivations and solutions for steady, semi-steady, and transient flow of single and multiple phase flow through porous media. Prerequisite: Pe Eng 241.

481 **Geodynamics** (LEC 3.0) The applications of continuum physics to geological and petroleum engineering problems. Topics include plate tectonics, stress and strain in solids, elasticity and flexure, heat transfer, gravity, fluid mechanics, rock rheology, faulting, and flow in porous media. Prerequisites: Math 22 and Geology 220. (Co-listed with Geology 481)

490 **Research** (IND 0.0-12.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

491 **Internship** (IND 0.0-15.0) Students working toward a doctor of engineering degree will select, with the advice of their committees, appropriate problems for preparation of a dissertation. The problem selected and internship plan must conform to the purpose of providing a high level engineering experience consistent with the intent of the doctor of engineering degree.

493 **Oral Examination** (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 **Continuous Registration** (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Physics Courses

300 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

302 **Physics For Elementary School Teachers** (LEC 2.0 and LAB 1.0) A nonmathematical review of the fundamental ideas of physics, including mechanics, matter, energy, sound, electricity, magnetism, astronomy, and light. Emphasis is placed on the development of hands-on activities. (For elementary school teachers or Master of Science for Teachers candidates only.)

303 **Physics For Secondary School Teachers** (LEC 3.0) A review of the fundamental ideas of physics, including mechanics, matter, energy, sound, electricity, magnetism, and light with an emphasis on how mathematics can be used to help understand the underlying concepts. (For secondary teachers or Masters of Science Teachers candidates only.) Prerequisites: Math 22 and admission to the MST program.

305 **Astrophysics** (LEC 3.0) The structure, physical characteristics and evolution of stars, binary systems, nebulae and galaxies. Prerequisite: Physics 107.

306 **Physics, Energy, and the Environment** (LEC 3.0) Applications of physics to the environment, including energy, its conservation and transformation, environmental consequences of energy use; world energy resources; atmospheric physics; sources of air, water, and land pollution, and the role physics plays in controlling those resources. May not be used as a 300-level elective for a B.S. in Physics. Prerequisite: Admissions to the MST program.

307 **Modern Physics II** (LEC 3.0) A continuation of Physics 207. An introduction to nuclear and particle physics. Topics include nuclear models, decays, and reactions, and elementary particles and fundamental forces. Prerequisites: Math 204 or 229, and either Physics 107 with consent of instructor or Physics 207.
308 Physical Mechanics (LEC 3.0) This course covers topics of rigid body motion in three dimensions, moving coordinate frames, two body collisions, conservation laws, small oscillations, generalized coordinates, and LaGrange's and Hamilton's equations. Prerequisite: Physics 208.

309 Astrophysical Concepts (LEC 3.0) A comprehensive course in modern astrophysics. Topics include: Earth and sky, planetary science, stellar structure and evolution, galaxies, and structure and evolution of the universe. The course includes hands-on computer simulation and telescope use. (For secondary teachers or Master of Science for Teachers candidates.) Prerequisite: Math 22 or admission to the MST program.

311 Thermal Physics (LEC 3.0) A study of the equilibrium states of matter as governed by the first and second laws of thermodynamics. Emphasis is placed on the microscopic approach with an introduction to statistical mechanics. Topics include the kinetic theory of (uniform) gases, phase equilibria in pure systems, and an introduction to quantum statistics. Prerequisite: Physics 107 or 207.

313 Introduction To General Relativity (LEC 3.0) An introduction to the theory of general relativity. Topics covered include the formalism of general relativity, Einstein's gravitational field equations, the Schwarzschild solution, black holes, and cosmological models of the universe. Prerequisite: Physics 208.

321 Electricity And Magnetism II (LEC 3.0) A continuation of Physics 221. Topics covered include the magnetostatic field, the magnetic vector potential, the magnetostatic field in matter, electrodynamics, and electromagnetic waves. Prerequisite: Physics 221.

322 Advanced Physics Laboratory I (LAB 3.0) A laboratory study of the principles of basic experiments in all major branches of physics. The experiments stress design of apparatus, and procedures and analysis in projects involving electronic, optical, mechanical, and vacuum techniques. Prerequisite: Physics 212.

323 Classical Optics (LEC 3.0) Physical optics and advanced topics in geometrical optics. Topics include ray propagation, electromagnetic propagation, mirrors, lenses, interference, diffraction, polarization, imaging systems, and guided waves. Prerequisites: Math 22 and Physics 24 or 25. (Co-listed with El Eng 323)

324 Fourier Optics (LEC 3.0) Applications of Fourier analysis and linear system theory to optics. Topics include scalar diffraction theory, Fourier transforming properties of lenses, optical information processing, and imaging systems. Prerequisites: El Eng 261 & 275 or Physics 208 & 321. (Co-listed with El Eng 324)

326 Fiber And Integrated Optics (LEC 3.0) Introduction to optical waveguides and their applications to communication and sensing. Topics include dielectric waveguide theory, optical fiber characteristics, integrated optic circuits, coupled-mode theory, optical communication systems, and photonic sensors. Prerequisite: El Eng 275 or Physics 321. (Co-listed with El Eng 326)

332 Advanced Physics Laboratory II (LAB 3.0) A senior laboratory involving experimental design. The student must specify his objectives, assemble apparatus, take measurements, analyze the results, form conclusions, write a report, and deliver an oral presentation of the results. Prerequisite: Physics 212.

351 Computational Physics (LEC 3.0 and LAB 1.0) An introduction to modern computer simulations for solving physics problems. The course will be project-oriented with examples including planetary motion, chaotic dynamics, quantum scattering, structure of atoms and clusters, molecular dynamics, and Monte-Carlo simulations. Prerequisites: Physics 107 or Physics 207; Math 204; programming experience.

355 Chaos, Fractals, and Nonlinear Dynamics (LEC 3.0) An introduction into nonlinear dynamics, deterministic chaos, and fractals. Topics covered include phase plane analysis, iterated maps, routes to chaos, Lyapunov exponents, strange attractors and pattern formation with applications to chaotic vibrations, population dynamics, chemical oscillations and lasers. Prerequisites: Math 204; Physics 24 or Physics 25.

357 Subatomic Physics (LEC 3.0) An introduction to elementary particles. Topics include particle properties, nuclear forces, particle interactions, the Standard Model for quarks and leptons, fundamental forces in gauge field theory models, and the role of elementary particle interactions in cosmology. Prerequisite: Physics 307.

361 Introduction To Quantum Mechanics (LEC 3.0) The fundamental concepts, postulates and methods of quantum mechanics and their applications to physical systems. Topics include solutions of the Schrodinger equation for simple systems and operator methods. Prerequisites: Physics 107 or 207, 208.

370 Plasma Physics I (LEC 3.0) Single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory. Diffusion of plasma in electric and magnetic fields. Analysis of laboratory plasmas and magnetic confinement devices. Introduction to plasma kinetic theory. Prerequisite: Aero Eng 231 or Mech Eng 231 or Physics 221 or Nuc Eng 221 or Elec Eng 271. (Co-listed with Aero Eng 370, Mech Eng 370, Nuc Eng 370)

371 Laser Physics (LEC 3.0) The generation of coherent radiation by lasers and the interaction of laser radiation with matter. Topics include stimulated emission, population inversion, optical cavities, optical gain, properties of laser media and other applications. Prerequisite: Physics 107 or 207.

377 Principles Of Engineering Materials (LEC 3.0) Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Ae Eng 377, Ch Eng 347, Mt Eng 377, Cr Eng 377)
381 Elementary Solid State Physics (LEC 3.0) An introductory study of the structure and physical properties of crystalline solids. Included are topics in crystal structure, x-ray diffraction, crystal binding, thermal properties of solids, free electron theory and elementary energy band theory. Prerequisites: Math 204 and Physics 107 or 207.

390 Undergraduate Research (IND 0.0-6.0) This course is designed for the undergraduate student who wishes to engage in research. It is not to be used for graduate credit nor for more than six credit hours of undergraduate credit. The subject and credit are to be arranged with the instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

402 Mathematical Physics I (LEC 3.0) Vector spaces, generalized coordinate transformations, vector analysis, tensors, partial differential equations in physics and boundary value problems, orthogonal functions and solutions to ordinary differential equations, hypergeometric, confluent hypergeometric, Legendre, Laguerre, and Bessel functions, Hermite polynomials, Green's functions in one dimension. (Co-listed with Math 402)

403 Mathematical Physics II (LEC 3.0) Green's functions in three dimensions, integral equations, complex variable theory and contour integration, group theory with applications to quantum mechanics, solid state and molecular physics. Prerequisite: Math 402 or Physics 402. (Co-listed with Math 403)

404 Advanced Physics Laboratory Teaching Methods (LEC 3.0) Objectives, methods and problems related to teaching of introductory physics, with an emphasis on laboratory instruction, the development of educational laboratory experiments and techniques, student learning styles, student assessment, student work groups, computer-based data acquisition, and communication techniques. Prerequisite: Graduate standing.

409 Classical Mechanics I (LEC 3.0) Methods of Newton, Lagrange, and Hamilton applied to the motion of particles and rigid bodies. Introduction to canonical transformations and Poisson brackets. Classical scattering and small oscillations. Prerequisites: Math 204, Physics 309.

410 Seminar (RSD 0.0-6.0) Discussion of current topics.

411 Electrodynamics I (LEC 3.0) A rigorous development of the fundamentals of electromagnetic fields and waves. Electrostatics, magnetostatics, Maxwell's equations--Green's function, boundary value problems, multipole, conservation laws. Prerequisites: E1 Eng 273 and Math 325; Physics 321.

413 Statistical Mechanics (LEC 3.0) A study of statistical ensembles; Maxwell-Boltzmann, FermiDirac and Einstein-Bose distribution laws, application to some simple physical systems. Prerequisites: Physics 309, 361.

451 Advanced Computational Physics (LEC 3.0 and LAB 1.0) An introduction to modern computer simulations for solving physics problems. The course will be project-oriented with examples including planetary motion, chaotic dynamics, quantum scattering, structure of atoms and clusters, molecular dynamics, and Monte-Carlo simulations. Graduate students will be required to do extra work upon consultation with their advisor. Prerequisite: Graduate Standing.

456 Advanced Chaos, Fractals, and Nonlinear Dynamics (LEC 3.0) An introduction into nonlinear dynamics, deterministic chaos, and fractals. Topics include phase plane analysis, routes to chaos, and pattern formation with applications in physics, chemistry and biology. Graduate students will be required to do extra work upon consultation with their advisor. Prerequisites: Math 204; Physics 24 or Physics 25; Graduate standing.

457 Advanced Subatomic Physics (LEC 3.0) An introduction to elementary particles. Topics include particle properties, nuclear forces, particle interactions, the Standard Model for quarks and leptons, fundamental forces in gauge field theory models, and the role of elementary particle interactions in cosmology. Graduate Students will be required to do extra work upon consultation with their advisor. Prerequisite: Physics 307.

461 Quantum Mechanics I (LEC 3.0) Basic formalism applied to selected problems. Schroedinger equation and one dimensional problems, Dirac notation, matrix mechanics, harmonic oscillator, angular momentum, hydrogen atom, variational methods, introduction to spin. Prerequisite: Physics 361 or equivalent.

463 Quantum Mechanics II (LEC 3.0) Perturbation theory, treatment of spin, angular momentum addition, Wigner-Eckart theorem; scattering theory including partial wave analysis, born approximation, and formal scattering theory; identical particles, introduction to second quantization, and structure of complex atoms. Prerequisite: Physics 461.

467 Quantum Statistical Mechanics (LEC 3.0) Techniques for calculation of the partition function with examples drawn from interacting Fermi gas, interacting Bose gas, superconductors, and similar sources. Prerequisites: Physics 413 and 463.

471 Atomic And Molecular Structure (LEC 3.0) Applications of quantum mechanics to the structure of atoms and molecules; perturbation and variational calculations, self-consistent field, multiplets, angular momenta, Thomas-Fermi model, diatomic molecules, spectral intensities. Prerequisite: Physics 461.
473 **Atomic Collisions** (LEC 3.0) Basic quantum mechanical concepts involved in atomic scattering theory. Topics include the Born approximation elastic collisions, and inelastic collisions. Other specific topics will be chosen from the general areas of electron, ion, and atom collisions with atoms and molecules. Prerequisite: Physics 471 or 463.

481 **Condensed Matter Physics** (LEC 3.0) A course in the physics of hard and soft matter including solids, liquids, and complex materials. Topics: atomic structure, mechanical properties, phonons, electronic structure, energy band theory, electronic correlations, transport properties, magnetism, superconductivity. Prerequisite: Physics 461.

490 **Research** (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 **Oral Examination** (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

494 **Coop Registration** (IND 0.0-1.0) Doctoral candidates participating in a cooperative program with another UM campus must enroll for one hour of credit for their first semester in the program and zero hours of credit for successive registration periods until degree is completed. Failure to do so may invalidate candidacy. Billing is automatic as is registration upon payment.

495 **Continuous Registration** (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Statistic Courses

300 **Special Problems** (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 **Special Topics** (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

305 **Making Sense Of Data For Elementary School Teachers** (LEC 3.0) An activity based course that is intended to provide elementary school teachers with the skills necessary to implement the Probability & Statistics strand of the American Statistical Association of the National Council of Teachers of Mathematics (NCTM) joint. Prerequisite: Graduate Standing.

306 **Making Sense Of Data For Middle School Teachers** (LEC 3.0) An activity based course that is intended to provide middle school teachers with the skills necessary to implement the Probability & Statistics strand of the American Statistical Association of the National Council of Teachers of Mathematics (NCTM) joint.

307 **Making Sense Of Data For High School Teachers** (LEC 3.0) An activity based course that is intended to provide high school teachers with the skills necessary to implement the Probability & Statistics strand of the American Statistical Association of the National Council of Teachers of Mathematics (NCTM) joint.

314 **Applied Time Series Analysis** (LEC 3.0) Introduction to time series modeling of empirical data observed over time. Topics include stationary processes, autocovariance functions, moving average, autoregressive, ARIMA, and GARCH models, spectral analysis, confidence intervals, forecasting, and forecast error. Prerequisites: One of Stat 213, 215, 217, 343 and one of Math 203, 208, or 308.

320 **Statistical Methods** (LEC 3.0) A continuation of Stat 215 with emphasis on statistical methods. Topics would include further work on regression analysis, control charts, acceptance sampling, nonparametric statistics, goodness of fit tests, reliability and life-testing, analysis of experimental designs. Prerequisite: Stat 215.

325 **Introduction to Biostatistics** (LEC 3.0 and LAB 1.0) Introduction to common biostatistical methods for designing research studies, collecting and analyzing data, with application to problems originating from the biological, environmental, and health sciences. Topics include randomization, means comparisons, ANOVA, regression, and analysis of count data. Prerequisite: Math 4 or equivalent.

343 **Probability And Statistics** (LEC 3.0) Introduction to the theory of probability and its applications, sample spaces, random variables, binomial, Poisson, normal distributions, derived distributions, and moment generating functions. Prerequisite: Math 22.

344 **Mathematical Statistics** (LEC 3.0) A continuation of Stat 343 with introduction to the theories of point estimation, hypothesis testing, and interval estimation. Includes sufficiency, completeness, likelihood and how they apply to the exponential family. Prerequisite: Stat 343.

346 **Regression Analysis** (LEC 3.0) Simple linear regression, multiple regression, regression diagnostics, multicollinearity, measures of influence and leverage, model selection techniques, polynomial models, regression with autocorrelated errors, introduction to non-linear regression. Prerequisites: Math 22 and one of Stat 211, 213, 215, 217, or 343. (Co-listed with Cmp Sc 366)

353 **Statistical Data Analysis** (LEC 3.0) Introduction to methods for analyzing statistical data from experiments and surveys. Analysis of variance, correlation, introduction to regression techniques, contingency tables, non-parametric techniques and introduction to modern statistical software. Prerequisites: Math 22 and one of Stat 115, 213, 215 and 217.
198 - Statistics Courses

355 Statistical Models in Actuarial Science (LEC 3.0) This course covers the statistical foundation of actuarial models and their applications. Topics include survival and severity models, Kaplan-Meier and Nelson-Aalen estimators, aggregate and credibility models for insurance losses, discrete time Markov chains, ruin theory, and simulation. Prerequisite: Stat 343 and either Stat 344 or a 200-level stat course. (Co-listed with Econ 360)

356 Statistical Models for Life Contingencies (LEC 3.0) The basic statistical theory of actuarial models for life uncertainties such as time of death. Multiple life and multiple decrement models, statistical models for life and contingent insurance; last survivor, disability, withdrawal, retirement and reserving models for life insurance. Prerequisite: Stat 343.

360 Statistical Data Analysis Using SAS (LEC 2.0 and LAB 1.0) This course will introduce the student to selected data analytic tools implemented in the Statistical Analysis System (SAS) and appropriate and effective use of these tools. Focus would be on both the use of SAS data analytic tools and the theoretical and methodological rationale that form the basis of such analyses. Prerequisite: One of Stat 213 or 215 or 217 or 343; and one of Stat 346 or 353 or 441 or 443 or 444 or 445.

390 Undergraduate Research (IND 0.0-6.0) This course is designed for the undergraduate student who wishes to engage in research. It is not to be used for graduate credit nor for more than six credit hours of undergraduate credit. The subject and credit are to be arranged with the instructor. Prerequisite: Consent of instructor.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

414 Statistical Time Series Analysis (LEC 3.0) A formal introduction to the fundamentals of statistical modeling and analysis of discrete time series. Topics include autoregressive and moving average processes, ARMA models, second order stationarity, vector processes, autocorrelation function, Fourier representation, estimation and prediction of time series. Prerequisites: Stat 343 and Math 203 or 208.

438 Stochastic Optimization (LEC 3.0) Introduction to stochastic modeling theory and application. Topics include probability theory, Markov processes, renewal theory, and queuing theory. Additional topics include stochastic dynamic programming and stochastic programming. Prerequisite: Eng Mgt 365. (Co-listed with Eng Mgt 438)

439 Clustering Algorithms (LEC 3.0) An introduction to cluster analysis and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student's degree program. (Co-listed with Comp Eng 439, Elec Eng 439, Sys Eng 439 and Comp Sci 449)

441 Stochastic Processes (LEC 3.0) Development and application of Poisson and nonhomogeneous Poisson processes; renewal processes; Markov chains and processes including birth and death processes; and normal processes, including Brownian motion. Prerequisites: Stat 343 and Math 204 or 229.

443 Nonparametric Statistical Methods (LEC 3.0) A course covering distribution free statistical methods. Topics include: order statistics, tests of hypotheses for one-sample and two-sample problems, analyses of variance, goodness-of-fit tests, runs test, independence and regression problems, point and interval estimation, ARE. Prerequisite: Stat 344.

444 Design And Analysis Of Experiments (LEC 3.0) Experimental designs and their statistical analysis. Includes completely randomized designs, complete and incomplete blocking designs, factorial and fractional factorial experiments, multiple comparisons, response surface analysis. Prerequisites: One of Stat 353, Eng Mq 387 and one of Stat 211, 213, 215, 217, 343; or Stat 343 and one of Stat 211, 213, 215, 217.

453 Linear Statistical Models I (LEC 3.0) Includes a development of the theory of the distribution of quadratic forms, and the estimation of parameters and testing hypotheses in linear statistical models. Prerequisites: Math 208 and Stat 343 and either Stat 353 or 344.

454 Linear Statistical Models II (LEC 3.0) Includes the theory of polynomial models, regression models, experimental design models, incomplete block models, nonlinear models, with emphasis on optimum properties of point and interval estimation and the power of tests. Prerequisite: Stat 453.

458 Advanced Mathematical Statistics II (LEC 3.0) A continuation of Stat 457 with the emphasis on hypothesis testing. Prerequisite: Stat 457.
The topics covered are architecture development, basic system architectural design techniques, functional decomposition, design and technical review objectives, and initial specifications. Prerequisite: Graduate or senior standing.

470 Theory Of Reliability (LEC 3.0) Statistical analyses of life-testing distributions such as the Weibull, gamma, exponential, logistic, and normal. Reliability estimation, tolerance limits, censored sampling, and applications of Monte-Carlo simulation. Prerequisite: Stat 344.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/ written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (LEC 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation and are away from the campus must continue to enroll for at least one hour of credit each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Systems Engineering Courses

300 Special Problems (IND 1.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 1.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

348 Wireless Networks (LEC 2.0 and LAB 1.0) Introduction to wireless communications and networking. Topics include transmission fundamentals, wireless channel, coding techniques and error control, satellite and cellular networks, cordless systems, mobile IP and management, multiple access techniques and wireless protocols, wireless LAN, IEEE 802.11, and adhoc and sensor networks. Prerequisites: Hardware competency, Elec Eng 243 or Comp Eng 213 and graduate standing. (Co-listed with Comp Eng 348 and Elec Eng 348)

367 Computational Intelligence (LEC 3.0) Introduction to Computational Intelligence (CI), Biological and Artificial Neuron, Neural Networks, Evolutionary Computing, Swarm Intelligence, Artificial Immune Systems, Fuzzy Systems, and Hybrid Systems. CI application case studies covered include digital systems, control, power systems, forecasting, and time-series predictions. Prerequisite: Stat 217. (Co-listed with Elec Eng 367 and Comp Eng 358)

368 System Engineering and Analysis I (LEC 3.0) The concepts of Systems Engineering are introduced through a project. Students work in virtual teams.
200 - Systems Engineering Courses

413 Economic Analysis for Systems Engineering (LEC 3.0) Methods of economic evaluation for engineering projects involving complex systems. Economic impacts on choosing system alternatives, life cycle costing, economic decisions involving risk and uncertainty, and engineering cost estimation for projects in government, defense, and commercial industries. Prerequisite: Sys Eng 413 can be taken concurrently with Sys Eng 368 with consent of instructor.

419 Network Centric Systems (LEC 3.0) Network-centric systems comprises a diverse category of complex systems with the primary purpose is providing network-type services. Network-centric systems are also known as collaborative systems. This course address the intersection between network engineering and the needs of systems architecting and engineering. Prerequisite: Sys Eng 469 or graduate standing. (Co-listed with Comp Eng 419)

427 Function-Based Risk Analysis (LEC 3.0) Risk analysis of products and systems will be explored using product functionality as the starting point. Traditional probabilistic risk assessment techniques will be covered along with recent approaches that use historical data to produce automatic risk assessments. Prerequisite: Graduate standing.

433 Distributed Systems Modeling (LEC 3.0) This course will discuss issues related to distributed systems architecting, modeling, analysis and representation, with specific focus on discrete-part manufacturing domain. Distributed modeling techniques and other model decomposition methods using simulation modeling and scalability issues will also be addressed.

435 Model Based Systems Engineering (LEC 3.0) This course covers the use of models to represent systems and the underlying system elements, components, etc. Topics also include SysML, executable systems architectures, model repositories, integration of models and information, and use of MBSE in distributed systems. Prerequisite: Sys Eng 433.

439 Clustering Algorithms (LEC 3.0) An introduction to cluster analysis and clustering algorithms rooted in computational intelligence, computer science and statistics. Clustering in sequential data, massive data and high dimensional data. Students will be evaluated by individual or group research projects and research presentations. Prerequisite: At least one graduate course in statistics, data mining, algorithms, computational intelligence, or neural networks, consistent with student’s degree program. (Co-listed with Comp Eng 439, Elec Eng 439, Comp Sci 449 and Stat 439)

443 Wireless Ad hoc and Sensor Networks (LEC 3.0) Introduction to ad hoc and sensor networks, IEEE standards, heterogeneity, quality of service, wireless channel issues, energy awareness, power and topology control, routing, scheduling, rate adaptation, self-organization, admission and flow control, energy harvesting, security and trust levels, hardware and applications. Prerequisite: Comp Eng 348 or Comp Eng 349 or equivalent. (Co-listed with Comp Eng 443 and Elec Eng 443)

449 Network-Centric Systems Reliability and Security (LEC 3.0) This course presents reliability and fault tolerance for network-centric systems, including models, metrics, and analysis techniques. This course also concentrates on security, including technical tools and methods for audit and assessment as well as management and policy issues. Prerequisite: Sys Eng/Comp Eng 419 or Comp Eng 349. (Co-listed with Comp Eng 449)

458 Adaptive Critic Designs (LEC 3.0) Review of Neurocontrol and Optimization, Introduction to Approximate Dynamic Programming (ADP), Reinforcement Learning (RL), Combined Concepts of ADP and RL - Heuristic Dynamic Programming (HDP), Dual Heuristic Programming (DHP), Global Dual Heuristic Programming (GDHP), and Case Studies. Prerequisite: Elec Eng 368 Neural Networks or equivalent (Computational Intelligence Comp Eng 401) (Co-listed with Comp Eng, Elec Eng, Mech Eng and Aero Eng 458)

468 Systems Engineering Analysis II (LEC 3.0) This course uses customized case studies based on team projects from prior courses. Topics covered include physical and functional analysis, analysis and traceability of requirements and specifications, verification and validation, optimization, simulation, and trade studies. Prerequisite: Sys Eng 368.

469 Systems Architecting (LEC 3.0) The objective of the course is to provide the basic tools and concepts of architecting complex engineering systems. Systems thinking, ambiguity in system architecting, search as an architecting process, SysML and DoDAF Architecting Framework, System of Systems and Network-Centric Architectures. Prerequisite: Sys Eng 469; can be taken concurrently with Sys Eng 468 with consent of instructor.

470 Software Intensive Systems Architecting (LEC 3.0) Basic tools and concepts of architecting complex software intensive systems are introduced. The following topics are covered under four main sections; namely Architecting Process, Architecting Heuristics, Architecting Patterns and Frameworks, and Architecture Assessment. Prerequisite: Graduate Standing.

478 Advanced Neural Networks (LEC 3.0) Advanced artificial neural network architectures, namely; Radial-Basis Function Networks, Support Vector Machines, Committee Machines, Principal Components Analysis, Information-Theoretic Models, Stochastic Machines, Neurodynamic Programming, Temporal Processing are the topics covered. Prerequisite: Sys Eng 378 or equivalent neural network course.

479 Smart Engineering System Design (LEC 3.0) This course covers the emerging approaches for designing of smart engineering systems architectures for complex systems through evolutionary acquisition,
namely; adaptive architecture generation for family of systems, complexity theory, evolutionary programming, fuzzy logic, collaborative behavior, artificial life, and chaos. Prerequisite: Sys Eng 378 or graduate standing.

480 Investment (LEC 3.0) An introduction to the theory and practice of investment, including financial markets and instruments, security trading, mutual funds, investment banking, interest rates, risk premiums, the capital asset pricing model, arbitrage pricing theory, market efficiency, bonds and the fixed income market, equity valuation, fundamental and technical analysis. Prerequisites: Eng Mgt 208, 308, 352, or equivalent. (Co-listed with Eng Mgt 480)

481 Financial Engineering (LEC 3.0) An introduction to financial engineering, with an emphasis on financial derivatives, including the future markets, the pricing of forwards and futures, forward rate agreements, interest and exchange rate futures, swaps, the options markets, option strategies, the binomial and Black-Scholes models for option valuation, the option Greeks, and volatility smiles. Prerequisites: Eng Mgt 308, Eng Mgt 352; Eng Mgt 480 or Sys Eng 480 or equivalent. (Co-listed with Eng Mgt 481)

482 Financial Engineering II (LEC 3.0) This course introduces advanced topics in financial engineering, which includes introduction to Wiener processes, martingales and Ito’s lemma; basic numerical methods for options pricing, exotic options; interest rate models; stochastic volatility models and jump-diffusion models; and valuation smiles. Prerequisites: Eng Mgt 308, Eng Mgt 352; Eng Mgt 480 or Sys Eng 480 or equivalent. (Co-listed with Eng Mgt 482)

490 Research (IND 1.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required. Prerequisite: Graduate standing.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examination for on-campus MS/PhD students may be processed during intersession. Off-campus MS students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive exam (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.

495 Continuous Registration (IND 1.0) Doctoral candidates who have completed all requirements for the degree except the dissertation, and are away from campus must continue to enroll for at least one credit hour each registration period until the degree is completed. Failure to do so may invalidate the candidacy. Billing will be automatic as will registration upon payment.

Technical Communication Courses

300 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Research Methods in Technical Communication (LEC 3.0) Students learn essential research methods in technical communication, including audience analysis, interviewing techniques, working with subject matter experts, and experimental research design. Prerequisites: TCH COM 65 AND TCH COM 240 or English 65 and English 240.

310 Seminar (RSD 0.0-6.0) Discussion of current topics. Prerequisite: TCH COM 65 and TCH COM 240.

331 Technical Editing (LEC 3.0) The principles and practices of technical editing, including usability, audience analysis, contextual editing, the conventions of scientific and technical communication, and the role of the editor in document development and publication. Students will also learn standard practices of copy editing and the use of style guides. Prerequisite: TCH COM 65 or English 65, or equivalent.

333 Proposal Writing (LEC 3.0) Familiarizes students with many aspects of writing proposals for various purposes in academic, professional, and public spheres. Offers students opportunities to write documents to promote their academic, professional, or personal goals or those of their organization(s). Prerequisite: One semester of college composition or technical writing.

334 Usability Studies (LEC 3.0) Students in this course will study and apply methods used by technical communicators to evaluate usability. Students will study methods used to evaluate human interaction with communication tools and how to make those products more suitable for human use. Prerequisite: One semester of college writing or technical writing.

340 Theory of Visual Technical Communication (LEC 3.0) A study of the relationships between visual and conceptual elements of technical communication. Prerequisites: TCH COM 65 and TCH COM 240 or English 65 and English 240.

361 History of Technical Communication (LEC 3.0) Introduction to the roles of the technical communicator and the technologies of communication from ancient cultures to the present. Prerequisite: TCH COM 65 or English 65, or equivalent.

380 Internship (IND 0.0-6.0) Internship will involve students applying critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student’s background and the setting. Prerequisites: Senior status; must have completed 24 hours in the major core curriculum.
385 Theory and Practice of Technical Communication (LEC 3.0) This capstone course enables the student to work on individual and group projects that put into play the theories and practices of technical communication. Students are expected to develop professional portfolios. Prerequisites: Senior Status and TCH COM 65 and TCH COM 240 or English 65 and English 240.

400 Special Problems (IND 0.0-6.0) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

401 Special Topics (Variable 0.0-6.0) This course is designed to give the department an opportunity to test a new course. Variable title.

402 Foundations of Technical Communication (LEC 3.0) Introduction to themes and issues, methods, and genres that define technical communication.

403 Theoretical Approaches to Technical Communication (LEC 3.0) Examines representative theories and research in written, oral, and visual modes of technical communication. Includes such issues as ethics, document design, rhetorical methods, and people-machine communication.

404 Teaching of Technical Communication (LEC 3.0) Provides a theoretical and pedagogical foundation for teaching workshops and undergraduate courses in technical communication. Includes both traditional and electronic settings.

409 Web-Based Communication (LEC 3.0) Covers such topics as advanced writing and editing for the web; the creation of rhetorically effective websites; the use of blogs, wikis, and other web genres to communicate technical information.

410 Seminar (RSD 0.0-6.0) Discussion of current topics.

411 International Technical Communication (LEC 3.0) Examines complexity of communication of technical information worldwide. Includes topics such as graphics, icons, symbols; user interface design; cross-cultural communication.

420 Advanced Theories of Visual Technical Communication (LEC 3.0) An in-depth investigation and analysis of historical and contemporary visual theories and their impact on technical communication, including visual rhetoric, semiotics, and design and critical theories.

433 Advanced Proposal Writing (LEC 3.0) Familiarizes graduate students with many aspects of writing proposals for various purposes in academic, professional, and public spheres. Offers opportunities to write documents to promote their academic, professional, or personal goals or those of their organization(s). Prerequisite: Graduate standing.

440 Advanced Layout and Design (LEC 3.0) Advanced theory and practice of layout and design for print and electronic media. Students who have taken TCH COM 240 may not take this course for credit. Prerequisite: Graduate standing.

450 Information Management in Technical Communication (LEC 3.0) Study of and practice in directing projects related to such areas as multimedia, web sites, strategic planning, newsletters. Includes writing planning documents, selecting team members, synchronizing assignments, testing prototypes, and issuing a final report.

490 Research (IND 0.0-15.0) Investigations of an advanced nature leading to the preparation of a thesis or dissertation. Consent of instructor required.

493 Oral Examination (IND 0.0) After completion of all other program requirements, oral examinations for on-campus M.S./Ph.D. students may be processed during intersession. Off-campus M.S. students must be enrolled in oral examination and must have paid an oral examination fee at the time of the defense/comprehensive examination (oral/written). All other students must enroll for credit commensurate with uses made of facilities and/or faculties. In no case shall this be for less than three (3) semester hours for resident students.