College of Arts & Sciences

- Aerospace Studies
- Art
- Biological Sciences
- Chemistry
- Computer Science
- Economics
- Education
- English
- Etymology
- Foreign Languages
- French
- German
- History
- Latin
- Mathematics
- Military Science
- Music
- Philosophy
- Physical Education
- Physics
- Political Science
- Pre-health Professions
- Pre-law
- Psychology
- Russian
- Sociology/Anthropology
- Spanish
- Speech & Media Studies
- Statistics
- Theatre
Aerospace Studies

Air Force ROTC

Air Force Reserve Officer Training Corps (ROTC) is administered by the Department of Aerospace Studies and is a program in the College of Arts and Sciences. The mission of Air Force ROTC is to produce leaders for the Air Force and build better citizens for America. As the largest source of Air Force officers, Air Force ROTC offers a number of opportunities for UMR students who wish to become commissioned officers by offering professional, academic, and military training. Leadership, communication, and basic military skills are the focus of the ROTC program. In addition to helping a student succeed during college, Air Force ROTC also fosters self-confidence and self-discipline.

Opportunities in the Air Force are excellent, with over 100 possible career fields available. Career field availability depends on academic discipline, medical condition, desires of the individual, and needs of the Air Force. As newly commissioned second lieutenants on active duty, Air Force ROTC graduates can serve worldwide, performing challenging and rewarding duties in highly technical, scientific, and operational areas such as design, research, engineering, systems development, space operations, computer science, procurement, flying, management, acquisition, and maintenance.

Although Air Force ROTC is set up as a four-year program, students can choose a four, three, or two-year course of study. The first two years of the program, called the General Military Course (GMC), cover basic introductory military topics as well as communication and leadership. The final two years of the program, called the Professional Officer Course (POC), cover topics such as leadership, management, doctrine, international events, quality, communication, and officership. In addition to the academic ROTC class, all cadets attend up to a one and a half-hour leadership laboratory each week. Leadership laboratory provides cadets with the knowledge and practical command and staff leadership experience in preparation for active duty as Air Force officers. It is largely cadet planned, directed, and centered.

Scholarships, which can cover up to full tuition and fees, are available to qualified cadets. A monthly stipend is given during the academic year to each cadet on scholarship and also to members of the POC. Students who receive an AFROTC scholarship also receive an annual $2000 supplement from UMR, which will currently cover most room costs excluding board. ROTC scholarship recipients are eligible to receive other UMR scholarships. Students do not have to be on a scholarship to complete our program and be an Air Force officer.

There is no obligation connected in taking Air Force ROTC during the freshman and sophomore years. Obligations begin only at the start of a student’s last two years of the program or after a ROTC scholarship is awarded and activated.

Students usually attend summer field training prior to their junior year, before elevation into the POC. Entrance into the POC is based on an extensive evaluation and selection process during the student’s sophomore year. Cadets who complete the POC in good standing and earn their academic degree are commissioned as second lieutenants and serve on active duty for four or more years, depending on their selected Air Force career field. Pilots incur a ten-year active duty service commitment after completing undergraduate pilot training. Navigators incur a six-year active duty service commitment after completing undergraduate navigator training.

The Air Force ROTC unit at UMR is organized as an objective wing, with associate groups, squadrons, and flights. Freshmen and sophomore cadets are assigned to one of the flights. They receive instruction from POC cadets in basic military customs and courtesies, drill movements, and many other facets of Air Force operations. Additionally, they are offered the opportunity to visit Air Force bases and discuss career opportunities with Air Force members. Junior and senior cadets are assigned and rotated through various leadership positions, gaining experience in management procedures.

Faculty

Professor:
Paul Hamacher, (Department Chair), M.S., Golden Gate University

Assistant Professor:
Charles D. Cox, M.S., Chapman University, Orange, CA
Andrew Chancellor, B.S., Central Missouri State University

Aerospace Studies Courses

150 Foundations of the U.S. Air Force I (Lect 0.5 and Lab 0.5) This survey course is designed to introduce students to the USAF and AFROTC. Topics include: military customs and courtesies, uniform wear, officership qualities, professionalism, AF core values, equal opportunity and treatment, AF officer benefits and opportunities and an introduction to communication skills. Leadership Lab is mandatory for cadets planning on a career in the AF.

151 Foundations of the U.S. Air Force II (Lect 0.5 and Lab 0.5) This survey course is a continuation of Arosp S 150. Covered topics include: origin of the AF, mission and organization of the AF, organization of a standard AF base, and further communication skills development. Leadership Lab is also mandatory for cadets.

200 Leadership Laboratory (Lect 0.5 and Lab 0.5) The course involves a study of Air Force customs and courtesies, drill and ceremonies, career opportunities in the Air Force and the life and work of an Air Force junior officer. Students develop their leadership potential in a practical supervised training laboratory, which typically includes field trips to Air Force installations throughout the United States.

250 The Evolution of USAF Air and Space Power I (Lect 0.5 and Lab 0.5) This course is designed to examine the general aspects of air and space power through a historical perspective..covering a time period from the first balloons to the beginning of the space age. It provides students with a
knowledge level understanding of the general elements and employment of air and space power from an institutional doctrinal and historical perspective. Examples of the importance of AF core values in historical events and in past AF leaders are pointed out. Continued development of communication skills is also emphasized. Leadership Lab is mandatory for cadets planning on a career in the AF.

251 The Evolution of USAF Air and Space Power II (Lect 0.5 and Lab 0.5) This course is a continuation of Arosp S 250. It covers a time period in AF history from the beginning of our space age in the early 1960’s to the present...with a continued emphasis on recognizing how past leaders and events have shaped our current AF organization and doctrine. Communication skills exercises are continued. Leadership Lab is also mandatory for cadets.

350 Air Force Leadership Studies I (Lect 2.5 and Lab 0.5) This course introduces students to the leadership and management skills required of an Air Force junior officer. Special topics include leadership ethics, the Air Force personnel and evaluation systems, and management fundamentals. Through the use of classroom tools that include case studies, Air Force leadership and management situations are examined and practical applications of studies concepts are exercised. The principles and theories of ethical behavior as well as the complete understanding of the individual responsibility and authority of an Air Force officer are stressed. This course includes a Leadership Lab that provides the students the opportunity to apply leadership and management principles.

351 Air Force Leadership Studies II (Lect 2.5 and Lab 0.5) This course is a continuation of Arosp S 350. Emphasis is placed on professional knowledge, communication skills, and ethical behavior. Varied Air Force-peculiar formats and situations are offered to apply learned listening, writing, and speaking skills. This course includes a Leadership Lab that provides the students the opportunity to apply leadership and management principles.

380 National Security Affairs/Preparation for Active Duty I (Lect 2.5 and Lab 0.5) This course examines national security policies, processes, and issues along with Air Force strategy and doctrine. Special topics include Air Force roles and missions, the roles of various federal government departments, military organizations and functions, and the concept of joint operations. Within this structure, continued emphasis is given to refining communication skills. This course includes a Leadership Laboratory that provides advanced leadership experiences, giving students the opportunity to apply the leadership and management principles of this course.

381 National Security Affairs/Preparation for Active Duty II (Lect 2.5 and Lab 0.5) Continuation of Arosp S 380. This final course of the Air Force ROTC curriculum examines officer-ship, advanced leadership ethics, military law, current Air Force issues, regional studies, core values, and preparation for active duty. This course includes a Leadership Laboratory that provides leadership experiences, giving students the opportunity to apply the leadership and management principles of this course.

Art

The study of art can broaden your experiences and help you gain a better perspective on the world.

UMR offers courses in art appreciation, art history, study of film, and applied courses in design, painting, and photography. Non-credit courses are available from time to time in other applied art or special interest courses.

Faculty

Professor:
James Bogan, Ph.D., Kansas

Lecturer:
Leo Soisson, M.F.A., Southern Illinois

Art Minor

The Art Minor offers students the opportunity to pursue an area of focus in studio art, art history, and film studies.

Requirements: The minor requires 15 hours, including Art 80: Art Appreciation, which is a required course. Students may take additional hours from these offerings: Art 85: Study of film; Art 222: Revolution and Romanticism; Art 255: Script to Screen; Philosophy 330: Aesthetics, and topics course from the Art 101, 201, 301 series. In addition, students may take up to six hours of Studio classes.

Film and Literature Minor

The Film and Literature Minor is an interdisciplinary and inter-textual course of study in which students will explore the connections between different mediums, increasing the pleasure and understanding of each.

Requirements:
The minor requires 12 hours, including the following required courses: Art 85: Study of Film (3 hours) and the core course English 177: Literature and Film (3 hours).

In addition, students will take 6 hours of electives in the field of literature and film studies. These electives can include but are not limited to:

- Art 255: Script to Screen (3)
- English 278: Thematic Studies in Lit & Film (3)
- English 279: Genre Studies in Lit & Film (3)
- Art 250: Thematic Studies in Film & Lit (3)
- Art 251: Genre Studies in Film & Lit (3)
Art Courses

020 Drawing I (Lect 3.0) Principles of drawing: placement, proportion, perspective, chiaroscuro, values, line, form, texture, and techniques. Applied problems to develop perceptual observation.

040 Painting I (Lect 3.0) Basic Exploration of oil painting techniques and methods. Still life, landscape and figure.

050 Painting II (Lect 3.0) Continuation of Art 40. Prerequisite: Art 40.

080 Art Appreciation (Lect 3.0) A basic introductory course designed to familiarize students who have little or no knowledge of the arts with fundamental knowledge necessary for intelligent approach to experiencing the visual arts; painting, sculpture, and architecture.

085 Study of Film (Lect 2.0 and Lab 1.0) A study of classic and contemporary films with emphasis on director's technique and philosophy. Films by Fellini, Antonioni plus Bergman, Chaplin, etc. will be viewed and discussed.

100 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

200 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

219 Art for Elementary Teachers (Lect 3.0) Considers the vital role of art activities and creative experiences in the growth and development of children at their level. Prerequisite: Educ 40. (Co-listed with Educ 219) Co-listed with: Educ 219

222 Revolution and Romanticism in the Arts 1785 - 1832 (Lect 3.0) This course will investigate the great revolution of thought, perception, language, through art during the period between 1785 and 1832. Artists, writers, and musicians to be studied include: Blake, David, Wordsworth, and Beethoven. The role of art and artists to the French Revolution will be stressed. Prerequisite: Introductory level Art or History course.

245 Thomas Hart Benton and the Tradition of American Art (Lect 3.0) Missouri artist Tom Benton lived amidst controversy and acclaim from the 1920's to the 1970's. The American tradition from which Benton grew will be studied, then his own work and his subsequent influence. Prerequisite: Art 85 or Art 80.

250 Thematic Studies in Film & Literature (Lect 3.0) Different thematic relationships between film & literature (e.g., Poe & Hitchcock, Shakespeare on Film, etc.) will be studied. Prerequisite: Art 85.

251 Genre Studies in Film & Literature (Lect 3.0) Topics examine various generic relationships between film & literature. (e.g., comedy, film noir, western film/literature) Prerequisite: Art 85.

255 Script to Screen: How Books Become Films (Lect 3.0) This course will focus on how words are transmuted into film images. By comparing the tests of poems, stories, and novels with the finished film, a double appreciation of both film and literature is gained. Prerequisite: Introductory level Art or Literature course.

300 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

Arts and Sciences

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

110 Hit the Ground Running (Lect 3.0) An introductory, multi-faceted lecture including a coordinated presentation of mathematics principles, chemical principles, academic skills development, and the elements of academic leadership. Objectives are to provide students with a positive and realistic experience that supports establishment of valid academic expectations and provides knowledge of the resources and strategies necessary to begin a strong academic career.

Biological Sciences

Bachelor of Arts
Bachelor of Sciences

Biological sciences or biology is the study of life and living organisms. Biological Sciences embraces a vast and rapidly expanding body of knowledge, including many details of:

- biochemistry, sub-cellular and molecular biology,
- the anatomy ad physiology of cells, tissues, organs and organ systems, whole multi-cellular plants, animals, and fungi,
- the complex structure, function, and behavior of individuals, populations, communities, ecosystems, and the entire biosphere.

Biology also draws on the physical sciences (chemistry, physics, mathematics, and earth sciences) as well as the behavioral sciences for analysis and interpretation of life’s varied processes and interrelationships.

The study of biology or biological sciences may become the academic foundation for many career and postgraduate opportunities in:
A variety of advanced courses offer greater depth, detail and specific information leading to proficiency and preparation for employment and other postgraduate activities. At UMR faculty members active in research teach all biological sciences courses. Classes are small, providing exceptional opportunity for discussion and individual attention. Undergraduate students are encouraged to participate in current research projects, learning techniques and developing skills that will prepare them for many exciting postgraduate opportunities. A strong background in mathematics and physical sciences, together with outstanding supporting course work in the humanities and social sciences provide a well-rounded educational experience and enhanced understanding. UMR students who have received their B.S. degrees in biological sciences have an excellent record of success. Average performance on nationally normed achievement examinations has been very high. Acceptance of UMR students in professional schools of medicine, dentistry and pharmacy and subsequent performance of our students in these professional schools remains exceptionally high. Many UMR biological sciences graduates have been accepted into prestigious graduate study programs in a variety of areas, including: biochemistry, microbiology, immunology, molecular genetics and genetic engineering, marine biology, cell and mammalian physiology, human physiology, environmental science, plant physiology, and evolution. Employment opportunities are many and varied, and future prospects for graduates in the biological sciences remain promising. The broad educational resources and depth of understanding available to the UMR student of biology offer adequate preparation and often a competitive edge for a broad variety of jobs and graduate study programs.

Faculty

Professor:
Roger Brown, Ph.D., Colorado State
Nord Gale (Distinguished Teaching Professor Emeritus), Ph.D., Brigham Young
Paula Lutz, (Dean, College of Arts & Sciences) Ph.D., Duke

Associate Professor:
Ronald L. Frank, Ph.D., Ohio State
James Hufham (Emeritus), Ph.D., Nebraska

Assistant Professor:
Yue-Wern Huang, Ph.D., Wisconsin-Madison
Anne Maglia, Ph.D., University of Kansas
Melanie Mormile, Ph.D., Oklahoma
Dev Niyogi, Ph.D., University of Colorado
Marshall Porterfield, Ph.D., LSU
David Westenberg, Ph.D., UCLA

Lecturer:
Tonye Numbere, Ph.D., Kansas State
Barbara Patterson, Ph.D., UMR
Terry Wilson, M.S., Southwest Missouri State

Bachelor of Arts Biological Sciences

Degree Requirements

Specific requirements for the B.A. degree in biological sciences include a minimum of 120 semester hours of credit.

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio Sc 102-Intro to Bio Sc</td>
<td>1</td>
</tr>
<tr>
<td>Bio Sc 110-Gen Bio</td>
<td>3</td>
</tr>
<tr>
<td>Bio Sc 112-Gen Bio Lab</td>
<td>2</td>
</tr>
<tr>
<td>Bio Sc 115-Zoology or Bio Sc 118 & 119-Plant Bio</td>
<td>4</td>
</tr>
<tr>
<td>Bio Sc 211-Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>Bio Sc 231-Gen Genetics</td>
<td>3</td>
</tr>
<tr>
<td>Bio Sc 251-Ecology</td>
<td>3</td>
</tr>
<tr>
<td>Bio Sc 310-Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Advanced courses, 200 level or higher (at least one with laboratory and one 300 level) 9

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 1,2,3, & 4-General Chem</td>
<td>9</td>
</tr>
<tr>
<td>Chem 221 & 223-Org Chem</td>
<td>6</td>
</tr>
</tbody>
</table>

Mathematics & Physical Science

Various courses in mathematics, physics, and/or geology chosen in consultation with academic adviser. (Note: Proficiency in College Algebra must be demonstrated by a grade of “C” or better in a College Algebra course or by examination.) 9

Computer Science/Statistics (One of the following)

- Cmp Sc 053-Intro to Prog 3
- Stat 115-Stat for Soc Sci 3
- Stat 211-Stat Tools for Decision Making 3

CAS General Requirements for BA (Basic skills/concepts)

- English Composition 6
- Western Civilizations 6
- Foreign Language 11

General Education

- Humanities 12
- Social Sciences 12
- Electives 16

Total 120 hours

Bachelor of Arts Biological Sciences

Pre-Medicine Emphasis Area

Degree Requirements

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio Sc 102-Intro to Bio Sc</td>
<td>1</td>
</tr>
<tr>
<td>Bio Sc 110-Gen Bio</td>
<td>3</td>
</tr>
<tr>
<td>Bio Sc 112-Gen Bio Lab</td>
<td>2</td>
</tr>
</tbody>
</table>
Biological Sciences Degree Requirements

Specific requirements for the B.S. degree in biological sciences include a minimum of 130 semester hours of credit, which must include 46 semester hours of biological sciences course work, to include:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio Sc 102-Intro to Bio Sc</td>
<td>1</td>
</tr>
<tr>
<td>Bio 110 & 112-General Biology</td>
<td>5</td>
</tr>
<tr>
<td>Bio Sc 115-Zoology</td>
<td>4</td>
</tr>
<tr>
<td>Bio Sc 118-Plant Biology</td>
<td>3</td>
</tr>
<tr>
<td>Bio Sc 119-Plant Biology Lab</td>
<td>1</td>
</tr>
<tr>
<td>Bio Sc 211-Cellular Biology</td>
<td>4</td>
</tr>
<tr>
<td>Bio Sc 221-Microbiology</td>
<td>5</td>
</tr>
<tr>
<td>Bio Sc 231-General Genetics</td>
<td>3</td>
</tr>
<tr>
<td>Bio Sc 251-Ecology</td>
<td>3</td>
</tr>
<tr>
<td>Bio Sc 310-Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Advanced biological sciences or approved advanced course work in other science or eng disciplines 16

21 semester hours of chemistry to include general chemistry (Chem 1, 2, 3, & 4) 9
Chem 51 & 52-Elem Analy Chem 4
Chem 221, 226, 223, 228-Org Chem 8
Physics 21, 22, 25 & 26-two semesters of physics ... 10

The Math/Statistics requirement will be a minimum of 10 credit hours with a requirement for Math 8, Math 21 or an approved statistical course may be used to meet 10 hr Math requirement for students entering at 6 or 8.

12 semester hours of humanities, excluding foreign language, and to include: English 20 (entering students will normally take English 20 either semester of the first year) and English 60 .. 12
9 semesters hours of social sciences, (to include Hist 112 or 175 or 176 or Pol Sc 90, or equivalent) 9

Elective credits: In consultation with his or her advisor, each student will elect sufficient additional courses to complete a minimum of 130 credit hours.

A minimum grade of "C" is required for each Biological Science course used to fulfill the B.S. degree requirements.

Minor Curriculum

A student wishing to minor in biological sciences must take a minimum of 20 hours of biological sciences course which should include Bio Sc 110, 112, 115, or (211) and at least seven hours of advanced Bio Sc to be selected upon consultation with a Bio Sc department advisor. Students minoring in biological sciences should declare these intentions prior to the Junior year.

Biological Sciences Courses

<table>
<thead>
<tr>
<th>101 Special Topics</th>
<th>(Variable) This course is designed to give the department an opportunity to test a new course. Variable title.</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 — Biological Sciences</td>
<td></td>
</tr>
</tbody>
</table>
102 **Introduction to Biological Science** (Lect 1.0) An introduction to the study of biology at UMR. Students will consider personal and professional opportunities within the various areas of biology and become acquainted with Biological Sciences faculty and departmental and campus facilities. Required of freshman Biological Sciences majors.

110 **General Biology** (Lect 3.0) A comprehensive study of the general principles of the biology of plants, animals, and protists including population biology and regulation mechanisms. Prerequisite: Entrance requirements.

112 **General Biology Lab** (Lect 1.0 and Lab 1.0) The laboratory work accompanying general biology consists of experiments designed to supplement and extend lectures in course Bio 1. Prerequisite: Preceded or accompanied by Bio 110.

115 **Zoology** (Lect 3.0 and Lab 1.0) Study of protozoans and major phyla in the animal kingdom. Emphasis on the evolution of organ systems and phylogenetic relationships. Prerequisite: Bio 112.

118 **Plant Biology** (Lect 3.0) A survey course covering the cellular structures unique to plants, their bizarre life cycles, and the mechanisms they use to survive, reproduce, and convert solar energy into a form usable by all other organisms. Prerequisite: Bio 110.

119 **Plant Biology Laboratory** (Lab 1.0) Bio 119 is designed to accompany Bio 118 and consists of experiments that will supplement and extend the lectures in Bio 118. Among the topics to be covered are photosynthesis, diversity, respiration, anatomy and development, hormones, and transpiration. Prerequisites: Bio 112, preceded or accompanied by Bio 118.

121 **Microbes and Man — Introductory Microbiology** (Lect 3.0) An introduction to the study of microorganisms in nature, especially as they affect humans. Consideration of the involvement of microorganisms in disease, decomposition, nutrition, agriculture, food processing and preservation, industrial applications and waste treatment.

201 **Special Topics** (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

211 **Cellular Biology** (Lect 3.0 and Lab 1.0) Study of the structure and function of euakaryotic and prokaryotic cells. Emphasis on macromolecules, metabolic pathways, and subcellular organelles. Prerequisite: Preceded or accompanied by Chem 3.

221 **Microbiology** (Lect 3.0 and Lab 2.0) General introduction to the culture and study of microorganisms, their physiology, structure, and contribution to biology. Prerequisite: Bio 211.

231 **General Genetics** (Lect 3.0) The study of the principles of heredity and reasons for variation in plants and animals. A study of Mendelian principles and population genetics with emphasis on the human.

235 **Evolution** (Lect 3.0) A survey of the genetic and environmental mechanisms associated with organic evolution.

241 **Human Anatomy** (Lect 3.0 and Lab 2.0) Study of gross anatomy and microscopic anatomy of the human organ systems. Laboratory work includes dissection of the cat. Prerequisite: Bio 110.

242 **Human Physiology** (Lect 4.0 and Lab 1.0) Study of the function of organ systems of the human body with emphasis on organ systems interactions. Laboratory will include demonstrations of basic physiologic principles. Prerequisite: Bio 110.

251 **Ecology** (Lect 3.0) Relationships among living organisms and their environments. The structure and function of ecosystems, with emphasis on limiting environmental factors, symbiotic relationships, biogeochemical cycles, food chain relationships, population dynamics, and man in the environment. Prerequisite: Entrance requirements.

300 **Special Problems** (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 **Special Topics** (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

310 **Seminar** (Variable) Presentation of a scientific paper concerned with current topics in biological sciences. Prerequisite: Senior standing.

315 **Developmental Biology** (Lect 3.0) Study of the patterns of development of the vertebrate embryo, the molecular mechanisms of tissue induction, and interactions among developing tissues. Prerequisites: Bio 115 and Bio 211.

321 **Pathogenic Microbiology** (Lect 3.0) A study of medically important microorganisms. Students will learn about the properties that enable organisms to cause disease as well as the disease process within the host. Special emphasis will be placed on recent advances in the molecular genetics of host pathogen interaction. Prerequisite: Bio 221 or Cv Eng 261.

322 **Pathogenic Microbiology Laboratory** (Lab 2.0) An investigation of techniques for the isolation and identification of pathogenic microorganisms. Prerequisite: Preceded or accompanied by Bio 321.

325 **Microbiology in Bioengineering** (Lect 3.0) General introduction to prokaryotic and eukaryotic microorganisms and viruses. Consideration of various parameters affecting the growth, basic techniques of culture, and industrial applications of microorganisms. Prerequisite: Bio 211.

328 **Nutritional and Medicinal Properties of Plants** (Lect 3.0) A survey of the biochemical and physiological functions of mineral elements, vitamins, and other organic compounds from plants necessary in human nutrition; and an overview of the medicinal derivatives of various plants, their effects and uses. Prerequisites: Bio 110 and Bio 211.
331 Molecular Genetics (Lect 3.0) A study of the properties and functions of DNA that make this macromolecule unique in the universe. Examples of replication, transcription, translation, repair, and regulation will be examined in viruses, prokaryotes, and eukaryotes. Prerequisites: Bio 231 and Bio 211.

332 Molecular Genetics Laboratory (Lab 2.0) This course provides experience in the use of a variety of DNA manipulation techniques that are common to molecular studies. These include DNA extraction, restriction mapping, Southern blotting, recombinant plasmid construction, DNA sequencing and analysis, and polymerase chain reaction. Prerequisite: Preceded or accompanied by Bio 331.

342 Exercise Physiology (Lect 3.0) Covers cardiovascular, pulmonary, and metabolic responses to aerobic and anaerobic muscular activities, work capacities, nutritional factors in performance, and role of exercise in health. Prerequisite: Bio 110.

352 Biological Effects of Radiation (Lect 3.0) Introduction to biological effects of ionizing radiation including mode of induction of mutations, effects on the developing fetus and specific tissues plus therapeutic applications of various types of radiation. Prerequisites: Bio 110 and Chem 3.

361 Cell Physiology (Lect 3.0) Consideration of the physicochemical nature of the cell, its relationship with environment, and its metabolic pathways. Prerequisite: Bio 211.

365 Comparative Animal Physiology (Lect 3.0) A comparative study of functional relationships, physiological adaptations, and survival strategies which are observed among various groups of animals as they respond to natural environmental conditions. Emphasis is placed on relating biochemical function and phylogenetic relationships. Prerequisites: Bio 215, Chem 223, and Bio 211 or Chem 361.

370 Toxicology (Lect 3.0) A study of natural and man-made toxicants, various possible routes of exposure, absorption, distribution, biotransformation, specific target sites, and mechanisms involved in elicitation of toxic effects, as well as detoxification and excretion. Prerequisites: Bio 211 plus either Bio 215 or 242.

375 Advanced Biology Lab Techniques I (Variable) Advanced level laboratory designed to acquaint students of cellular and molecular biology with techniques employed in current research. Students select one to three miniprojects, each designed to involve 40 to 45 hours of library and laboratory work. Prerequisite: Junior or senior standing in Biological Sciences or related field plus consent of instructor.

376 Advanced Biology Lab Techniques II (Variable) Continued laboratory study of current bioresearch techniques. Further work with miniprojects. Prerequisite: Junior or senior standing in Biological Sciences or related field plus consent of instructor.

381 Immunology (Lect 3.0) A study of the principles of immunology, including biological and biochemical aspects of the immune response, immunohematology, serology, immunoglobulin and T-cell mediated allergies, tumor and transplantation immunology, autoimmune diseases, and the role of immunity in host defense. Prerequisites: Chem 223 or Chem 363 and Bio 211.

391 General Virology (Lect 3.0) An overview of the field of virology, including plant, animal, and bacterial viruses. Discussions will include morphological classification, virus-host interactions, genetics, clinical and industrial aspects of viruses, and viruses as model systems for basic biological studies. Prerequisites: Bio 110, 211, 221, Chem 1, 3, 221.

Chemistry

Bachelor of Arts
Bachelor of Science
Bachelor of Science (non-ACS Certified)
Master of Science
Master of Science for Teachers
Doctor of Philosophy

Emphasis areas at Bachelor of Science level in biochemistry, polymer and coatings science, and pre-medicine chemistry.

Chemistry is the study of the elements, the compounds they form and the reactions they undergo.

The program of study encompasses the full range of the subject plus mathematics, physics, and, if desired, biology. Students may also pursue special interests such as analytical, biological, electrochemical, environmental, inorganic, nuclear, organic, physical or polymer chemistry.

The B.A. offers a general education degree with a chemistry focus. The B.A. degree may be appropriate for students in pre-professional programs (pre-medicine, pre-veterinary, pre-dentistry, pre-pharmacy, chemical sales and marketing.

Chemists tackle a broad range of challenges, from environmental cleanup and pollution prevention to creating the materials that will take humans to Mars. A Bachelor’s degree in Chemistry will provide many career possibilities. It has been called the central science because it occupies a pivotal place in many disciplines. As such it serves as the foundation for many other professions such as medicine, biotechnology, ceramics, chemical engineering, polymers, materials, metallurgy and environmental sciences.

All students are encouraged to participate in research programs during their undergraduate career. Such participation can lead to valuable experience and the possibility of publications, awards and recognition in the chemistry work place. Students may opt to participate in the...
campus wide "Opportunities in Research Experience" (OURE). Through OURE they can receive academic credit and a stipend for conducting a research project of mutual interest to the student and a faculty member.

Schrenk Hall is home to the department and where most chemistry classes and laboratories are held. The department has a broad range of modern instrumentation and equipment to prepare the student for the future.

Faculty

Professors:
Louis Biolsi (Emeritus), Ph.D., Rensselaer
Frank Blum (Curators’), Ph.D., Minnesota
Harvest L. Collier, (Associate Dean Arts & Sciences), Ph.D., MS State
William James (Emeritus), Ph.D., Iowa State
Shubhender Kapila, Ph.D., Dalhousie University
Gary Long, Ph.D., Syracuse
Oliver Manuel (Emeritus), Ph.D., Arkansas
Ekkehard Sinn (Department Chair), Ph.D., University of New South Wales
James Stoffer (Curators’ Emeritus), Ph.D., Purdue
Jay A. Switzer (Donald L. Castleman/FCR Missouri, Endowed Professor of Discovery in Chemistry), Ph.D., Wayne State University

Associate Professors:
Nuran Ercal, Ph.D., Hacettepe University
Nicholas Leventis, Ph.D., Michigan State University
Yinfa Ma, Ph.D., Iowa State University
B. Ken Robertson (Emeritus), Ph.D., Texas A&M
Chariklia Sotiropoulos-Leventis, Ph.D., Michigan State University
Pericles Stavropoulos, Ph.D., Imperial College of Science, Tech. & Medicine, London, U.K.
Michael R. Van De Mark, Ph.D., Texas A&M
Philip Whitefield, Ph.D., University of London Queen-Mary College, London, England

Assistant Professors:
Charles C. Chusuei, Ph.D., George Mason University
Scott Kirkby, Ph.D., University of Toronto
Clifton N. Merrow, Ph.D., University of Utah
V. Prakash Reddy, Ph.D., Case Western Reserve University
Thomas Schuman, Ph.D., University of Alabama in Huntsville

Bachelor of Arts Chemistry

FRESHMAN YEAR

First Semester
Chem 1-General Chemistry 4
Chem 2-General Chemistry Lab 1
Chem 4-Intro to Lab Safety 1
Math 8-Calculus with Analytic Geometry I 5
English 20-Exposition & Argumentation 2
Elective ... 2

Second Semester
Chem 3-General Chemistry 3
Chem 8-Qualitative Analysis 2
History 111-Early Western Civ 3

SECOND SEMESTER

Math 21-Calc w/Analytic Geometry II 5
Humanities Electives 3

SOPHOMORE YEAR

First Semester Credit
Chem 221-Organic Chemistry I 3
Chem 226-Organic Chemistry I Lab 1
Electives .. 5
History 112-Modern Western Civ 3
Humanities Elective 3

Second Semester
Chem 223-Organic Chemistry II 3
Chem 228-Organic Chemistry II Lab 1
Elective .. 4
English 60-Writing & Research 3
Social Elective 3

JUNIOR YEAR

First Semester Credit
Chem 51-Elem Quant Chem Analy 2
Chem 52-Elem Quant Chem Analy Lab 2
Physics 21-General Physics I 4
Physics 22-General Physics Lab I 1
Stat 213-Applied Engineering Stat 3
Elective ... 3

Second Semester
Chem Electives (see list below) 4
Physics 25-General Physics II 4
Physics 26-General Physics Lab II 1
Elective ... 6

SENIOR YEAR

First Semester Credit
Chem 241, 243 or 343-Phy Chem 3
Chem 242 or 244-Phy Chem Lab 1
Humanities Elective Literature 3
Social Electives 6
Elective ... 3

Second Semester
Chem 310-Seminar 1
Humanities Elective 3
Social Sciences Elective 3
Elective ... 8

Elective credits include a minor in one of the following areas is required: English, Economics, History, Philosophy, Psychology, Sociology, Communications, Speech, Media, Political Science, Music, Mathematics, Statistics, Foreign language, Computer Science, Biology, or Art. See Undergraduate catalog for courses required for specific minor. All chemistry majors are encouraged to do research through Chem 390. A total of 9 credits of a modern foreign language must also be taken as part of the electives above.

Chem Elective must be from one or more of the following: Chem 321, 328, 342, 346, 349, 351, 355, 361, 362, 363, 371, 375, 381, 384, 385. This program of study allows students to design, in conjunction with their chemistry advisor, a program for many disciplines including pre-law, business, pre-dentistry, pre-veteri-
nary medicine, as well as pre-medicine. An example of such a program is shown for pre-medical studies:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio Sc 110-Gen Bio</td>
<td>4</td>
</tr>
<tr>
<td>Bio Sc 112-Bio Lab</td>
<td>4</td>
</tr>
<tr>
<td>Bio Sc 211-Cellular Bio</td>
<td>4</td>
</tr>
<tr>
<td>Chem 361-Biochem</td>
<td>3</td>
</tr>
<tr>
<td>Chem 362-Biochem Lab</td>
<td>2</td>
</tr>
</tbody>
</table>

A grade of "C" or better is required for each Chemistry course counted towards the degree.

Bachelor of Science Chemistry

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
</tr>
<tr>
<td>Chem 1-General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Chem 2-General Chemistry Lab</td>
<td>1</td>
</tr>
<tr>
<td>Chem 4-Intro to Lab Safety Haz Mat</td>
<td>1</td>
</tr>
<tr>
<td>Chem 11-Intro to Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>Math 8-Calculus with Analytic Geometry I</td>
<td>5</td>
</tr>
<tr>
<td>English 20-Exposition & Argumentation</td>
<td>3</td>
</tr>
<tr>
<td>History 112,175,176 or Pol Sc 90</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 3-General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Chem 8-Qualitative Analysis</td>
<td>2</td>
</tr>
<tr>
<td>Math 21-Calculus with Analytic Geometry II</td>
<td>5</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
</tr>
<tr>
<td>Chem 221-Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Chem 226-Organic Chemistry I Lab</td>
<td>1</td>
</tr>
<tr>
<td>Math 22-Calculus with Analytic Geometry III</td>
<td>4</td>
</tr>
<tr>
<td>Physics 21-General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Physics 22-General Physics Lab</td>
<td>1</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 223-Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>Chem 228-Organic Chemistry II Lab</td>
<td>1</td>
</tr>
<tr>
<td>Physics 25-General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>Physics 26-General Physics II Lab</td>
<td>1</td>
</tr>
<tr>
<td>Cmp Sc 53 or Cmp Sc 74 & 78-Intro to Prog</td>
<td>3</td>
</tr>
<tr>
<td>Stat 213-Applied Eng Stat</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
</tr>
<tr>
<td>Chem 343-Intro to Quantum Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>English 60-Writing & Research</td>
<td>3</td>
</tr>
<tr>
<td>Chem 361-Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 51-Quantitative Analysis</td>
<td>2</td>
</tr>
<tr>
<td>Chem 52-Quantitative Analysis Lab</td>
<td>2</td>
</tr>
<tr>
<td>Chem 237-Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Chem 238-Inorganic Chemistry Lab</td>
<td>1</td>
</tr>
<tr>
<td>Chem 241-Physical Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
</tr>
<tr>
<td>Chem 242-Physical Chem Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:

Grade Requirements: Students must complete a minimum of 133 credit hours for a Bachelor of Science in Chemistry degree. A minimum grade of "C" is required for each chemistry course counted towards the degree.

ROTC: Basic ROTC may be taken in the freshman and sophomore year, but is not countable towards a degree.

Chemistry Electives: Of these thirteen (13) hours of chemistry electives, three (3) must be chosen from 300 (or 400 with permission) level chemistry courses, and ten (10) hours must be 200 level or higher in chemistry or another technical area with permission of department chairperson.

Electives: There are thirty (30) hours of electives. Six (6) elective hours must be completed in the social sciences. Nine (9) elective hours are required in the humanities, exclusive of foreign language. Three of the humanities hours must be literature. Three (3) of the humanities hours are to be at the 100 level or higher. Three (3) hours are free electives.

Twelve (12) hours of electives in a coherent block of 100 level or higher course work from outside the department are required. Students are encouraged to select electives from math and science that complement their program of study. Recommended courses include but are not limited to the following:

- Biology, 200 and 300 level, especially 211
- Math 200 and 300 level, especially 204, 208 & 325
- Physics 200 and 300 level, especially 208, 221, 323 & 341
- Statistics, 200 & 300 level, especially 343, 346 & 353
- Also, Ceramic Engineering 391 and 392, or Geology 381

(A series of foreign language courses may be substituted for the above.) Students who plan to teach high school chemistry should consult the Education section of this catalog.
Bachelor of Science
Chemistry (non-ACS certified)

FRESHMAN YEAR
First Semester Credit
Chem 1-General Chemistry4
Chem 2-General Chemistry Lab1
Chem 4-Intro to Lab Safety Haz Mat1
Math 8-Calculus with Analytic Geometry I5
Electives ...3
English 20-Exposition & Argumentation3
17
Second Semester
Chem 3-General Chemistry3
Chem 8-Qualitative Analysis2
Math 21-Calculus with Analytic Geometry II5
History 112,175,176, or Pol Sc 903
Electives ...3
16
SOPHOMORE YEAR
First Semester Credit
Chem 221-Organic Chemistry I3
Chem 226-Organic Chemistry I Lab1
Math 22-Calculus with Analytic Geometry III4
Electives ...5
Social Sciences Elective3
16
Second Semester
Chem 223-Organic Chemistry II3
Chem 228-Organic Chemistry II Lab1
English 60-Writing & Research3
Social Sciences Elective3
Electives ...7
17
JUNIOR YEAR
First Semester Credit
Chem 51-Elementary Quantum Chemistry2
Chem 52-Elementary Quantum Chemistry Lab2
Physics 21-General Physics I4
Physics 22-General Physics Lab I1
Electives ...6
18
Second Semester
Chem 251-Intermediate Quantum Chemistry4
Chem Elective-3XX Lecture3
Chem Elective 3XX Lab1
Physics 25-General Physics II4
Physics 26-General Physics Lab II1
Humanities Elective3
16
SENIOR YEAR
First Semester Credit
Chem 343-Physical Chemistry3
Humanities Elective Literature3
Electives ...9
15
Second Semester
Chem 241-Physical Chemistry3
Chem 242-Physical Chemistry Lab1
Chem 310-Seminar1
Electives ...3
17
A minor in either Mathematics, Physics, Biology, Psychology, or Computer Science must be met. See Undergraduate catalog for courses required for specific minor. Chem 3xx Elective must be from one or more of the following: Chem 321, 328, 342, 346, 351, 355, 361, 362, 363, 371, 373, 375, 381, 384, 385.

This program of study allows students to design, in conjunction with their chemistry advisor, a program for many disciplines including pre-law, business, pre-dentistry, pre-veterinary medicine, as well as pre-medicine. An example of such a program is shown for pre-medical studies. Pre-Medical Chemistry Majors Options. Electives must include:
Bio Sci 110-General Bio4
Bio Sci 112-Bio Lab1
Bio Sci 211-Cellular Bio4
Chemistry 3XX Electives:
Chem 361-Biochem3
Chem 362-Biochem Lab2
A grade of “C” or better is required for each Chemistry course counted towards the degree.

Minor in Chemistry

A minor in chemistry requires a minimum of 18 hours of chemistry course work selected in conjunction with a chemistry faculty advisor. The required courses are Chem 1, 2, 3, 4, 8, 221 and either 224 or 226. Three additional hours of chemistry are to be selected from Chem 151, or other Chem 200 and 300 level courses.

Chemistry
Biochemistry Emphasis Area

FRESHMAN YEAR
First Semester Credit
Chem 1-General Chemistry4
Chem 2-General Chemistry Lab1
Chem 4-Intro to Lab Safety Hazardous Materials1
Chem 11-Intro to Chemistry1
Math 8-Calculus with Analytic Geometry I5
English 20-Exposition & Argumentation3
History 112,175,176, or Pol Sc 903
218
Second Semester
Chem 3-General Chemistry3
Chem 8-Qualitative Analysis2
Math 21-Calculus with Analytic Geometry II5
Bio Sci 211-Cellular Biology4
Humanities Elective3
17
SOPHOMORE YEAR
First Semester Credit
Chem 221-Organic Chemistry I3
Chem 226-Organic Chemistry I Lab1
Math 22-Calculus with Analytic Geometry III4
Physics 21-General Physics I4
Physics 22-General Physics Lab 1
Literature Elective .. 3 16

Second Semester
Chem 223-Organic Chemistry II 3
Chem 228-Organic Chemistry II Lab 1
Physics 25-General Physics II 4
Physics 26-General Physics II Lab 1
Cmp Sc 53 or Cmp Sc 74 & 78-Intro to Prog 3
Stat 213-Applied Eng Stat 3
Out of Department Elective 3 18

JUNIOR YEAR
First Semester Credit
Chem 343-Intro to Quantum Chemistry 3
Chem 361-Biochemistry 3
Chem 362-Biochemistry Lab 2
English 60-Writing & Research 3
Social Sciences Elective 3
Out of Department Elective 3 17

Second Semester
Chem 51-Quantitative Analysis 2
Chem 52-Quantitative Analysis Lab 2
Chem 241-Physical Chemistry 3
Chem 242-Physical Chem Lab 1
Chem 363-Intermediate Metabolism 3
Humanities Elective ... 3
Out of Department Elective 2 16

SENIOR YEAR
First Semester Credit
Chem 243-Physical Chemistry 3
Chem 244-Physical Chem Lab 1
Chem 251-Intermediate Quantitative Analysis 4
Chem 310-Undergraduate Seminar or
Chem 390-Undergraduate Research 1
Bio Sc 331-Molecular Genetics 3
Out of Department Elective 3 15

Second Semester
Chem 237-Inorganic Chemistry 3
Chem 238-Inorganic Chem Lab 1
Chem 300-Special Problems 1
Chem 310-Undergraduate Undergraduate Seminar or
Chem 390-Undergraduate Research 1
Chem 328-Organic Syn & Spec Analy 3
Social Sciences Elective 3
Out of Department Elective 2 14

Notes:
The minimum credit hours required for a Bachelor of
Science-Chemistry (Biochemistry Emphasis Area) is
131 hours. A minimum grade of "C" is required for each
Chemistry course counted towards the degree. Basic
ROTC may be taken in the freshman and sophomore
year, but is not countable towards a degree. At least
three hours of the humanities or literature electives are
to be at the 100 level or higher.
The out of department electives are a sequence of
courses from some discipline outside their major de-
partment and must be used to achieve some breadth in
the students’ education in accordance with their future
plans. Students planning to go to graduate school
should take three semesters of a foreign language in-
cluding the scientific literature course. French, German,
or Russian are recommended. Students planning to en-
ter industry at the B.S. level may take a sequence of 11
or more SCH from any other department on campus, if
not already required for the B.S. Degree in Chemistry.

Chemistry
Polymer & Coatings Science Emphasis Area

FRESHMAN YEAR
First Semester Credit
Chem 1-General Chemistry 4
Chem 2-General Chemistry Lab 1
Chem 4-Intro to Lab Safety Hazardous Materials 1
Chem 11-Intro to Chemistry 1
Math 8-Calculus with Analytic Geometry I 5
English 20-Exposition & Argumentation 3
History 112,175,176 or Pol Sc 90 3 18

Second Semester
Chem 3-General Chemistry 3
Chem 8-Qualitative Analysis 2
Math 21-Calculus with Analytic Geometry II 5
Electives ... 6 16

SOPHOMORE YEAR
First Semester Credit
Chem 221-Organic Chemistry I 3
Chem 226-Organic Chemistry I Lab 1
Math 22-Calculus with Analytic Geometry III 4
Physics 21-General Physics I 4
Physics 22-General Physics Lab 1
Electives ... 3 16

Second Semester
Chem 223-Organic Chemistry II 3
Chem 228-Organic Chemistry II Lab 1
Physics 25-General Physics II 4
Physics 26-General Physics II Lab 1
Cmp Sc 53 or Cmp Sc 74 & 78-Intro to Programming 3
Stat 213-Applied Eng Stat 3 15

JUNIOR YEAR
First Semester Credit
Chem 343-Intro to Quantum Chemistry 3
Chem 381-Polymer Chemistry 3
Chem 361-Biochemistry 3
English 60-Writing & Research 3
Electives ... 4 16

Second Semester
Chem 51-Quantitative Analysis 2
Chem 52-Quantitative Analysis Lab 2
Chem 241-Physical Chemistry 3
Chem 242-Physical Chem Lab 1
Chem 363-Intermediate Metabolism 3
Humanities Elective ... 3
Out of Department Elective 2 14
First Semester Credit
Chem 242-Physical Chem Lab
Chem 241-Physical Chemistry
Chem 243-Physical Chemistry
Chem 244-Physical Chem Lab
Chem 251-Intermediate Quantitative Analysis
Ch Eng 375-Structures & Properties of Polymers
Chem 390-Undergraduate Research
Electives

Second Semester
Chem 237-Inorganic Chemistry
Chem 238-Inorganic Chem Lab
Chem 328-Organic Syn & Spec Analy
Chem 390-Undergraduate Research
Chemistry Electives
Electives

Second Semester
Chem 237-Inorganic Chemistry
Chem 238-Inorganic Chem Lab
Chem 328-Organic Syn & Spec Analy
Chem 390-Undergraduate Research
Chemistry Electives
Electives

Notes:
Grade Requirements: Students must complete a minimum of 131 credit hours for a Bachelor of Science-Chemistry degree. A minimum grade of “C” is required for each Chemistry course counted towards the degree.

ROTC: Basic ROTC may be taken in the freshman and sophomore years, but is not countable towards a degree.

Chem 390 - Undergraduate Research: The undergraduate research must be done in Polymers and Coatings Science.

Electives: There are twenty-eight (28) hours of electives. Six (6) elective hours must be completed in the social sciences. Nine (9) elective hours are required in the humanities, exclusive of foreign language. Three of the humanities hours must be literature. Three of the humanities hours are to be at the 100 level or higher. Three (3) hours of elective may be chosen from Materials Science related courses numbered in the 300-series.

Chemistry
Pre-medicine Emphasis Area

FRESHMAN YEAR
First Semester Credit
Chem 1-General Chemistry
Chem 2-General Chemistry Lab
Chem 4-Intro to Lab Safety & Hazardous Materials
Chem 11-Intro to Chemistry
Math 8-Calculus with Analytic Geometry I
English 20-Exposition & Argumentation
History 112,175,176 or Pol Sc 90

Second Semester
Chem 3-General Chemistry
Chem 8-Qualitative Analysis
Math 21-Calculus with Analytic Geometry II
Bio Sc 110-General Biology
Bio Sc 112-General Biology Lab
Humanities Elective

SOPHOMORE YEAR
First Semester Credit
Chem 221-Organic Chemistry I
Chem 222-Organic Chemistry I Lab
Math 22-Calculus with Analytic Geometry III
Physics 21-General Physics I
Physics 22-General Physics Lab
Bio Sc 211-Cellular Biology

Second Semester
Chem 223-Organic Chemistry II
Chem 228-Organic Chemistry II Lab
Physics 25-General Physics II
Physics 26-General Physics II Lab
Cmp Sc 53 or Cmp Sc 74 & 78-Intro to Programming
Stat 213-Applied Eng Stat
Social Sciences Elective

JUNIOR YEAR
First Semester Credit
Chem 343-Intro to Quantum Chemistry
Chem 361-Biochemistry
Chem 362-Biochemistry Lab
English 60-Writing & Research
Bio Sc 241-Human Anatomy

Second Semester
Chem 51-Quantitative Analysis
Chem 52-Quantitative Analysis Lab
Chem 241-Physical Chemistry
Chem 242-Physical Chem Lab
Chem 363-Intermediary Metabolism
Bio Sc 242-Human Physiology

SENIOR YEAR
First Semester Credit
Chem 243-Physical Chemistry
Chem 244-Physical Chem Lab
Chem 251-Intermediate Quantitative Analysis
Chem 310-Undergraduate Seminar or
Chem 390-Undergraduate Research
Social Sciences Elective
Literature Elective

Second Semester
Chem 237-Inorganic Chemistry
Chem 238-Inorganic Chem Lab
Chem 328-Organic Syn & Spec Analy
Chem 310-Undergraduate Seminar or Chem 390-Undergraduate Research
Advanced Chemistry Electives
Humanities Elective

Notes:
The minimum credit hours required for a Bachelor of Science-Chemistry (Premedicine Emphasis Area) is 132 hours. A minimum grade of “C” is required for each Chemistry course counted towards the degree. Basic ROTC may be taken in the freshman and sophomore years, but is not countable towards a degree. At least three hours of the humanities or literature electives are
Chemistry Courses

001 General Chemistry (Lect 4.0) A comprehensive study of the general principles of chemistry with emphasis on the fundamental laws and their application in practical computations. The class is divided into smaller sections one day a week for recitation and discussion of problems. Prerequisite: Entrance requirements.

002 General Chemistry Laboratory (Lab 1.0) The laboratory work accompanying general chemistry consists of experiments designed to supplement lectures in Chem 1. Prerequisite: Preceded or accompanied by Chem 001 and Chem 004 or equivalent training program approved by UMR.

003 General Chemistry (Lect 3.0) Continuation of course Chem 1 with some emphasis on descriptive chemistry. The ionic theory and mass laws are introduced and applied at advantageous points in the lecture. Prerequisites: Chem 1 and 2.

004 Introduction to Laboratory Safety & Hazardous Materials (Lect 1.0) A systematic study of safe laboratory operations and pertinent regulations of state and federal agencies.

005 General Chemistry for Engineers (Lect 4.0 and Lab 1.0) An accelerated version of Chem 1, Chem 2, and Chem 3. Four lectures and three laboratory hours per week. Students who do not meet these entrance requirements must take Chem 1, 2, & 3. Prerequisite: Preceded or accompanied by Chem 4 or an equivalent training program approved by UMR. A minimum score of 60 for the sum of the MMPT and the ACT N. SCI. test scores with neither score below 27.

008 Qualitative Analysis (Lab 2.0) This course is to accompany the study of the metals in general chemistry and is devoted to the qualitative separation and detection of the metals. Prerequisite: Preceded or accompanied by Chem 3 and Chem 4 or an equivalent training program approved by UMR.

010 General Chemistry for Non-Science Majors (Lect 3.0) A one semester introduction to chemistry designed to acquaint the student with the philosophy of the chemist's approach to problem solving and the contribution of chemistry to society. Prerequisite: Entrance requirements.

011 Introduction to Chemistry (Lect 1.0) Introduction to chemistry, its intellectual and professional opportunities. Students will be acquainted with various areas of chemistry and with departmental and campus facilities useful to their future studies. Required of all freshman chemistry majors; encouraged for undergraduate transfer chemistry majors.

012 Invitational Seminar (Lect 1.0) This invitational seminar will introduce the student to research in chemistry. A series of seminars will be presented by faculty and outside speakers on current topics in chemical research. Prerequisite: Chem 1 or Chem 5.

014 Elementary Analytical Chemistry (Lect 3.0 and Lab 2.0) A study of the general theories for separation and identification of metals. It also includes the fundamental principles of quantitative analysis. Prerequisite: Preceded or accompanied by Chem 3 and Chem 4 or an equivalent training program approved by UMR.

051 Elementary Quantitative Chemical Analysis (Lect 2.0) A treatise of the fundamental principles of analytical chemistry and their application in analytical methods. Prerequisite: Preceded or accompanied by Chem 3 or to be accompanied by Chem 52.

052 Elementary Quantitative Chemical Analysis (Lab 2.0) The application of the principles of analytical chemistry in gravimetric and volumetric determinations. Prerequisite: To be accompanied by Chem 51 and preceded or accompanied by Chem 4 or an equivalent training program approved by UMR.

100 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

110 Master Student (Lect 1.0) Master Student is an orientation course for new and transfer students presented by faculty and outside speakers on current topics in chemical research. Prerequisite: Chem 1 or Chem 5.

151 Quantitative Chemical Analysis (Lect 3.0 and Lab 2.0) A study of the fundamental principles of quantitative analytical chemistry and the application of such principles to gravimetric, volumetric, colorimetric, and electroanalytical determinations. Prerequisites: Chem 8, 241 and preceded or accompanied by Chem 4 or an equivalent training program approved by UMR.

200 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

210 Seminar (Variable) Discussion of current topics.

212 Science Teaching With In-classroom Computers (Lect 2.0 and Lab 1.0) Lectures with laboratory sessions that provide student with indepth knowledge of computer hardware operation, software application and instructional methods. A computer is required for the course. Student full participation is expected as a partial measure of course completion. Prerequisite: Elementary or secondary science teacher certification.

221 Organic Chemistry I (Lect 3.0) A study of the theory and practice of the fundamental reactions of organic compounds. Prerequisite: Chem 3 or 8.
222 **Organic Chemistry I Lab** (Lab 1.0) A study of basic organic chemical laboratory procedures. Prerequisites: Preceded or accompanied by Chem 221 and Chem 4 or an equivalent training program approved by UMR.

223 **Organic Chemistry II** (Lect 3.0) A continuation of Chem 221. Prerequisite: Chem 221.

224 **Organic Chemistry Lab** (Lab 1.0) The use of organic chemical laboratory procedures. For chemical engineering majors only. Prerequisite: Preceded or accompanied by Chem 223 and Chem 4 or an equivalent training program approved by UMR.

225 **Organic Chemistry I** (Lect 3.0) Study of the chemistry of organic compounds from the standpoint of theory of reaction mechanisms and rates involving electronic and steric considerations. Prerequisite: Chem 8 or 14.

226 **Organic Chemistry I Lab** (Lab 1.0) Laboratory involves purification techniques, simple and multistep synthesis and spectroscopic identification of organic functional groups. Prerequisites: Preceded or accompanied by Chem 221 and either Chem 4 or an equivalent training program approved by UMR.

228 **Organic Chemistry II Lab** (Lab 1.0) Continuation of Chem 226. Prerequisites: Chem 226, preceded or accompanied by Chem 223 and Chem 4 or an equivalent training program approved by UMR.

237 **Inorganic Chemistry** (Lect 3.0) A study of modern concepts of atomic structure, chemical bonding, thermodynamics and kinetics as related to the periodic relationship of the elements. Reference to topics of current interests as applied to the above areas. Prerequisite: Preceded or accompanied by Chem 243.

238 **Inorganic Chemistry Laboratory** (Lab 1.0) Synthesis and characterization of inorganic chemicals, high and low temperature syntheses, inert atmosphere and vacuum manipulations, electrochemistry, magnetochemistry, spectroscopy (NMR, IR, UV/VIS), superconductivity. Prerequisites: Preceded or accompanied by Chem 237 and Chem 4 or an equivalent training program approved by UMR.

240 **Physical Chemistry** (Lect 3.0) A study of the laws of thermodynamics and their applications to chemical systems. Prerequisites: Chem 51 and 52, Math 22, Physics 25.

241 **Physical Chemistry** (Lect 3.0) A study of the laws of thermodynamics and their applications to the states of matter, solutions, and equilibria. Prerequisites: Math 22, Physics 25.

242 **Physical Chemistry Laboratory** (Lab 1.0) Some typical operations of experimental physical chemistry. Prerequisites: Preceded or accompanied by Chem 241 and Chem 4 or an equivalent training program approved by UMR.

243 **Physical Chemistry** (Lect 3.0) A study of kinetic theory, chemical kinetics, electromotive force and ionic equilibria. Prerequisite: Chem 241 or consent of department.

244 **Physical Chemistry Laboratory** (Lab 1.0) A continuation of Chem 242. Prerequisite: Preceded or accompanied by Chem 243 or 240 and Chem 4 or an equivalent training program approved by UMR.

251 **Intermediate Quantitative Analysis** (Lect 3.0 and Lab 1.0) The course provides an overview on the applications of atomic spectroscopy, electroanalytical x-ray, electron spectroscopy, and separation techniques for chemical analysis. Prerequisites: Chem 4, Chem 223.

300 **Special Problems** (Variable) Problems or readings on specific subjects or projects in the department. Prerequisite: Preceded or accompanied by Chem 4 or an equivalent training program approved by UMR. Consent of instructor required.

301 **Special Topics** (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

305 **Advanced Chemical Preparations and Techniques** (Lect 1.0 and Lab 2.0) A course designed to develop facility in the use of equipment and techniques commonly used in advanced work in experimental chemistry. Prerequisite: Preceded or accompanied by Chem 4 or an equivalent training program approved by UMR.

310 **Undergraduate Seminar** (Lect 1.0) Written and oral presentations of current topics in chemistry. This course may serve as part of the capstone requirement for chemistry majors.

321 **Intermediate Organic Chemistry I** (Lect 3.0) An advanced course designed to give the student a mastery of the fundamentals of organic chemical reactions and theory. Prerequisites: Chem 223 and 243.

322 **Intermediate Organic Chemistry II** (Lect 3.0) A systematic study of organic reactions, their mechanisms and synthetic applications. Prerequisites: Chem 223 and 243.

325 **Unit Processes - Organic Chemical Industry** (Lect 3.0) A detailed study of the fundamental unit processes of organic chemistry. Prerequisite: Chem 221. (Co-listed with Ch Eng 353) Co-listed with: Ch Eng 353

331 **Selected Topics in Inorganic Chemistry** (Lect 3.0) A study of inorganic chemistry with emphasis on physical methods. General subjects covered include: molecular structure, bonding, complexes, spectroscopy, and reaction rates. Prerequisite: Preceded or accompanied by Chem 243.
338 Advanced General Chemistry for Secondary Teachers (Lect 3.0 and Lab 1.0) A study of the general principles of chemistry with emphasis on the fundamental laws and their application in practical applications. The laboratory experiments are designed to support lectures and to be used as teaching demonstrations in high schools. Prerequisite: One year of college chemistry.

343 Introduction to Quantum Chemistry (Lect 3.0) A study of molecular structures and spectroscopy, statistical thermodynamics, kinetic theory, chemical kinetics, crystals, and liquids. Prerequisites: Math 22 & Physics 25 or equivalents.

344 Advanced Physical Chemistry (Lect 3.0) Advanced undergraduate treatments of statistical mechanics, kinetics, group theory, and spectroscopy. Prerequisite: Chem 343.

346 Chemical Thermodynamics (Lect 3.0) A study of the laws of thermodynamics with application to chemical systems. Emphasis is placed on partial molal functions. Prerequisite: Chem 243.

349 The Physical Chemistry of Colloidal Dispersions (Lect 3.0) The stability of colloidal systems is treated using the kinetic approach with interparticle potentials. The results are extended to practical systems of microemulsions, emulsions and foams. Prerequisite: Chem 243.

351 Advanced Analytical Chemistry (Lect 3.0) Theoretical and practical aspects of modern analytical chemistry. Prerequisite: Chem 251.

355 Instrumental Methods of Chemical Analysis (Lect 3.0 and Lab 1.0) Principles and analytical applications of molecular spectroscopy, chromatographic separations, mass spectrometry, and radiochemistry. A brief overview of instrumentation, signal generation and processing, and automated analysis is also provided. Prerequisites: Chem 4, Chem 52, Chem 223, Chem 243.

361 General Biochemistry (Lect 3.0) A resume of the important aspects of quantitative and physical chemistry in biochemical processes. General subjects covered include: proteins, nucleic acids, enzymes, carbohydrates and lipids. Prerequisites: Chem 223 and Bio 211.

362 General Biochemistry Laboratory (Lab 2.0) Experiments are integrated with the lectures and cover the chemical and physical properties of proteins, enzymes, nucleic acids, carbohydrates and lipids. Prerequisites: Preceded or accompanied by Chem 361 and Chem 4 or an equivalent training program approved by UMR.

367 Industrial Biochemistry (Lect 3.0) A study of the problems involved in the utilization of biological systems for the production of bulk chemicals, the preparation of biologicals and the treatment of waste from plants producing biologicals and foodstuffs. Prerequisite: Junior standing.

371 Nuclear and Radiochemistry (Lect 3.0 and Lab 1.0) A study of the fundamentals of nuclear and radiochemistry including properties of radiations; effect of radiation on materials, production, measurement and use of radioactive tracers; and the chemistry of reactor materials. Laboratory training includes radiochemistry technology. Prerequisites: Physics 107 or 207 and preceded or accompanied by Chem 4 or an equivalent training program approved by UMR.

373 Atmospheric Chemistry (Lect 3.0) A chemical study of the troposphere including composition; nucleation, growth stability, distribution, diffusion, and fallout of aerosols; and meteorological aspect. Prerequisite: Chem 243.

375 Principles of Environmental Monitoring (Lect 3.0) This course provides an overview of environmental monitoring methodologies. Discussion covers thermodynamic and kinetic processes that affect chemical transport and fate in the environment. Federal environmental regulations and remediation technologies are also covered with specific examples. Prerequisites: Chem 221, Physics 25.

381 Chemistry and Inherent Properties of Polymers (Lect 3.0) A basic study of the organic chemistry of natural and synthetic high polymers, their inherent properties and their uses in plastic, fiber, rubber, resin, food, paper and soap industries. Prerequisite: Chem 223.

384 Polymer Science Laboratory (Lect 1.0 and Lab 2.0) Lectures and laboratory experiments dealing with polymerization reactions, solution properties and bulk or solid properties will be presented. Each student will prepare polymers and carry out all characterization experiments on actual samples. Prerequisite: Chem 381 or Ch Eng 375, preceded or accompanied by Chem 4 or an equivalent training program approved by UMR.

385 Fundamentals of Protective Coating I (Lect 3.0) Study of the basic principles of protective coatings with particular reference to the paint and varnish industry. Classifications, manufacture, properties and uses of protective coatings. Prerequisite: Chem 223.

390 Undergraduate Research (Variable) Designed for the undergraduate student who wishes to engage in research. Does not lead to the preparation of a thesis. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor. Preparation of a written, detailed report is required of the student. Prerequisite: Must meet departmental requirements for instruction in laboratory safety. Consent of instructor required.
The Computer Science Department educates students in a broad range of areas in computer science. Computer Science students take courses in the design and implementation of software systems and the algorithms (problem solving techniques) used to solve “real world” problems in business, industry, and engineering or as preparation for graduate study. While instruction and research are on the leading edge of computing, the Department endeavors to keep class size small to facilitate student and faculty interactions.

In addition to computer science courses, the Department's undergraduate program requires students to be educated in a broad range of general education courses. During their senior year, all computer science seniors take the capstone course that gives them "real world" experience working with teams composed of fellow students and practicing computer scientists. These teams design, implement, test, and maintain actual software systems. (The sample curriculum shown below provides more detail.)

The Computer Science faculty has a broad range of scholarly interests. These interests include computational science, graphics and robotics, information systems (traditional and multimedia), intelligent systems (artificial intelligence), parallel and distributed computing, web computing, as well as software engineering. Faculty are not only actively doing research in these areas, they integrate their research experiences with the classroom experiences of undergraduates as well as graduates.

Computer science graduates from UMR work in a variety of environments not only around the world but also in space. Some work for large companies, others prefer smaller companies. Many of our graduates have started their own companies. Regardless of their choice of employment, UMR Computer Science graduates are in high demand as evidenced by the number of companies who specifically recruit our graduates.

The Computer Science Department at UMR makes use of both its own laboratories as well as university computing facilities. The Department maintains several laboratories including the following instructional laboratories:

- **Instructional Workstation Laboratory** that provides Unix workstations
- **Instructional PC Laboratory** consisting of PC computing platforms, and the
- **Computer Science Learning Center**

Research laboratories provide support for both undergraduate and graduate students. These laboratories include:

- **Software Engineering Laboratory**
- **Experimental Computation Laboratory**
- **Intelligent Knowledge Management Laboratory**
- **Computer Vision and Multimedia Laboratory**

Remote computer access is available to all students, faculty and staff.

For further information, visit the Department’s web page at http://www.cs.umr.edu or contact us at 573-341-4491 or at: compsci@cs.umr.edu.

Faculty

Professors:
- Arlan Dekock, Ph.D., South Dakota
- Fikret Ercal, Ph.D., Ohio State
- Bruce McMillin, Ph.D., Michigan State
- Chaman Sabharwal, Ph.D., Illinois
- Daniel St. Clair (Department Chair), Ph.D., UMR
- Ralph Wilkerson, Ph.D., Southern Illinois

Associate Professors:
- Michael Hilgers, Ph.D., Brown University
- Frank Liu, Ph.D., Texas A & M
- Franck Xia, Ph.D., University of Paris VI

Assistant Professors:
- Yongjian Fu, Ph.D., Simon Fraser University, Canada
- Sanjay Madria, Ph.D., Indian Institute of Technology
- S.R.Subramanya, Ph.D., George Washington Univ

Teaching Associate:
- David M. Mentis, M.S., UMR

Undergraduate Coordinator/Freshman Advisor & Transfer Advisor:
- Clayton Price, M.S., UMR

Emeritus Faculty:
- Thomas Baird, M.S., UMR
- Billy Gillett, Ph.D., Oklahoma State
- John Hamblen, Ph.D., Purdue
- Ralph E. Lee, M.A., Indiana
- John B. Prater, Ph.D., UMR
- Howard D. Pyron, Ph.D., Iowa State
- Kellam Rigler, Ph.D., Pittsburgh
- Thomas J. Sager, Ph.D., New Mexico
- Frank G. Walters, M.S., UMR
- George W. Zobrist, Ph.D., Missouri-Columbia

Adjunct Faculty:
- Richard Altheide, B.S., UMR
- William E. Bond, Ph.D., Rensselaer
- Mark Bookout, B.S., Park College
- Megan Brady, M.S., UMR
- Randy Cannis, JD, UMC
- Barry Flachsbart, Ph.D., Stanford
- James Leonard, M.S., UMR
- Tachen L. Lo, Ph.D., Texas, Austin
- Richard Strandberg, M.S., UMR
- Daniel Uetrecht, M.S., UMR.
- William Van Stoecker, M.D., UMC

Bachelor of Science

Computer Science

(130 Credit Hours)

All computer science majors must earn a “C” or better grade in each of the following courses: Cmp Sc 53, Cmp Sc 54, Cmp Sc 153, Cmp Sc 158, and Cmp Sc 253.
All computer science majors must earn a minimum cumulative grade point average of 2.00 for all computer science courses presented to satisfy the required and elective computer science requirements.

Sample Course of Study

FRESHMAN YEAR
First Semester
Cmp Sc 1-Intro to Computer Science 1
Cmp Sc 53-Intro to Programming .. 3
Cmp Sc 54-Intro to Prog Lab ... 1
English 20-Exposition & Argumentation 3
Math 8-Calculus with Analytic Geometry I 5
Humanities Elective (3) ... 3

Second Semester
Cmp Sc 153-Data Structures I .. 3
History Elective (2) ... 3
Math 21-Calculus with Analytic Geometry II 5
Laboratory science course(s) (1) 4-6

14-17

SOPHOMORE YEAR
First Semester
Literature Elective (3) ... 3
Cmp Sc 158-Discrete Math for Cmp Sc 3
Math 22-Calculus with Analytic Geometry III 4
Physics Elective (3) ... 4
Sp & MS 85-Intro to Speech (4) 3

17

Second Semester
Math 208-Linear Algebra I .. 3
Cmp Sc 238-File Struct & Intro Database Sys 3
Cmp Sc 111-Intro to Cmp Eng .. 3
Physics Elective (3) ... 4
Stat 215-Engineering Statistics (6) 3

16

JUNIOR YEAR
First Semester
Cmp Sc 213-Digital Systems Design 3
Cmp Sc 253-Data Structures II ... 3
Cmp Sc 284-Intro Operating Systems 3
Social Science Elective (2) .. 3
Free Elective (8) .. 3

15

Second Semester
Cmp Sc 236-Prog Languages & Translators 3
Social Science Elective (2) .. 3
Cmp Sc 228-Intro to Numerical Methods 3
English 60-Writing and Research 3
Free Electives (8) .. 6

18

SENIOR YEAR
First Semester
Cmp Sc Electives (9) .. 6
Eng/Science Electives (10) ... 6
Humanities/Social Science Elective (11) 3
Cmp Sc 397-Software Systems Development I 3

18

Second Semester
Cmp Sc Electives (9) .. 6
Eng/Science Electives (10) ... 6
Humanities/Social Science Elective (11) 3
Free Elective (8) .. 3

15

1) Any science lecture-laboratory course or course pair totaling at least four hours credit. The laboratory is mandatory in all cases. These course(s) may be selected from: Chem 1, 2 and 4; Bio Sc 110 and 112; Physics 9, 11 and 10; and Geology 51.
2) Any nine hours that include courses from at least two of the following areas: economics, history, political science, psychology, or sociology. One course must satisfy the Missouri and U.S. Constitution requirement.
4) Sp & MS 85 or Sp & MS 283.
5) One literature and one humanities course in any of the humanities.
6) Stat 215 or 343.
7) Math 203 or 208.
8) Courses chosen from any field so that 130 hours are completed. These and only these courses may be taken pass/fail and only one course may be taken pass/fail each semester. Some courses such as algebra, trigonometry and the first two years of ROTC do not count toward the 130 hours.
9) Any twelve hours from computer science courses, at least six hours must be from 300 level. No X7X courses will be accepted.
10) Any nine hours chosen from departments that offer a B.S., (or Basic Engineering), excluding computer science.
11) Any six hours in humanities or social science.
11) Laboratory not required.

Computer Science Minor Curriculum

A student with a minor in computer science must meet the following requirements:
A) Cmp Sc 153 and 12 elective hours in computer science beyond Cmp Sc 53, 54, 73 & 77 or 74 & 78.
B) A member of the computer science faculty will serve as the student’s minor advisor. The student and his/her minor advisor will plan a course of study to meet the specific interests and needs of the student.
C) Students pursuing a minor in computer science must earn a ”C” or better, in Cmp Sc 53, Cmp Sc 54, Cmp Sc 153, Cmp Sc 158, and Cmp Sc 253 if any of these courses are taken for the minor.

Computer Science Courses

001 Introduction to Computer Science (Lect 1.0)
This course is devoted to an introduction of various areas of Computer Science, the faculty members, and lab equipment. Computer ethics will be discussed in several lectures.

053 Introduction to Programming (Lect 3.0)
Programming design and development using C++. Emphasis placed on problem solving methods using good programming practices and algorithm design and development. Topics included are syntax/semantics, logical, relational and
arithmetic operators, decision branching, loops, functions, file I/O, arrays, output formatting, C-strings, and an introduction to Object-Oriented Programming including the development and use of classes. Prerequisite: Accompanied by Cmp Sc 54.

054 Introduction to Programming Laboratory (Lab 1.0) Practical applications of concepts learned in Computer Science 53. Hands-on instruction in C++ developing, debugging, and testing programming projects. Prerequisite: Accompanied by Computer Science 53.

071 Introduction to Basic (Lect 3.0) An introduction to the structure of programs and programming techniques in Fortran to solve science and engineering problems. Topics include data representation, basic solutions of numerical problems and the debugging and verification of programs. Prerequisite: Entrance requirements.

072 Software Application on the PC (Lect 3.0) An introduction to operating systems, word processing, spreadsheets, and data base manipulation. A postbaccalaureate course designed for teachers and persons in related occupations. To be offered on sufficient demand. This course cannot be used toward a Cmp Sc degree.

073 Basic Scientific Programming (Lect 2.0) Introduction to the structure of programs and programming techniques in Fortran to solve science and engineering problems. Topics include data representation, basic solutions of numerical problems and the debugging and verification of programs. Prerequisite: Entrance requirements.

074 Introduction to Programming Methodology (Lect 2.0) Basic structured programming and problem solving techniques using C++. Development, debugging, and testing of programs, data representation. Topics to include syntax/semantics, operators, loops, decision branching, arrays, file I/O. This course is a terminal course for non-majors and is not sufficient for entry into Computer Science 153.

077 Computer Programming Laboratory (Lab 1.0) A laboratory to accompany Cmp Sc 73 which emphasizes the designing, writing and debugging of programs in Fortran. Prerequisite: Accompanied by Cmp Sc 73.

078 Programming Methodology Laboratory (Lab 1.0) A hands-on introduction to structured programming in C++. Development, coding, debugging, and execution of programming concepts discussed in Computer Science 74. Prerequisite: Accompanied by Computer Science 74.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

137 Assembly Language Programming (Lect 3.0) An investigation of the logical basis of a particular computer from the programmer’s viewpoint. Topics will include: Machine representation of numbers and characters, instruction formats, machine operations and addressing techniques. Additional topics may include machine-level input/output and interrupt structure. Numerous problems will be worked using a basic assembler language. Prerequisites: Cmp Sc 53 with a grade of "C" or better.

153 Data Structures I (Lect 3.0) A continuation of the development of structured programming concepts and their use in program development. Stacks, queues, linked list, arrays, trees, sorting and searching will be taught together with their use in implementations of a number of algorithms. Prerequisites: Grade of "C" or better in Cmp Sc 53.

158 Discrete Mathematics for Computer Science (Lect 3.0) A rigorous treatment of topics from discrete mathematics which are essential to computer science. Principal topics include: sets, relations, functions, mathematical induction, mathematical logic (proposition and predicate), switching circuits, Karnaugh maps, graph theory and its application. Prerequisite: Sophomore standing.

200 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

202 Cooperative Work Training (Variable) On-the-job experience gained through cooperative education with industry, with credit arranged through departmental cooperative advisor. Grade received depends on quality of reports submitted and work supervisors evaluation.

210 Seminar (Variable) Discussion of current topics.

228 Introduction to Numerical Methods (Lect 3.0) Finite difference interpolation, numerical differentiation and integration, linear systems of equations, solution of nonlinear equations, numerical solution of ordinary differential equations, computational techniques and the programming of a large number of problems on digital computers. Prerequisite: Math 22 and programming competency.

234 Introduction to Computer Organization and Assembly (Lect 3.0) A detailed study designed to teach the building blocks of a computer system, assembly language programming and the basic computer organization concepts. Subjects include digital logic, performance issues, machine & assembly language, binary arithmetic, and the structure of an ALU. Prerequisites: Cmp Sc 153 and Cmp Sc 158.

235 Computer Organization (Lect 3.0) A detailed study of computer organization concepts and the components of a computer system including control unit, microprogramming, pipelining, memory hierarchy, cache design, virtual memory, I/O devices, and a brief introduction to parallel processors. Prerequisite: Cmp Sc 234.

236 Programming Languages and Translators (Lect 3.0) Covers basic design of programming languages, compilers and interpreters. The con-
cepts of syntax, variables, expressions, types, scope, functions, procedures, statements, I/O, exception handling and concurrency are introduced. The manner in which various programming languages handle these concepts is discussed. Prerequisite: Cmp Sc 253.

238 File Structures and Introduction to Database Systems (Lect 3.0) Course covers major topics in file structures and database systems including techniques for disk access and organization, record and file structures, index structures, sequential file, dense/sparse and secondary indexes, B-tress; range queries, insertion/deletion, hash tables, fundamentals of database systems, the ER model, relational model, algebra and SQL. Prerequisite: Cmp Sc 153.

253 Data Structures II (Lect 3.0) A continuation of the study of data structures and abstract data types with emphasis on complexity, performance, and correctness. Topics will include tree balancing algorithms, self-balancing trees, networks and graph algorithms, event simulation, and memory management. Prerequisites: Cmp Sc 158 and (Cmp Sc 153 or 274).

260 Introduction to Operations Research (Lect 3.0) A survey of linear programming, dynamic programming, transportation and network theory (PERT, traveling salesman and shortest route problems), assignment problem, equipment replacement, scheduling problem, inventory control, decision theory, queuing theory, game theory and simulation. The emphasis will be on methodology. Prerequisite: Stat (116 or 213 or 215) and programming competency.

273 Software Systems Survey I (Lect 1.5 and Lab 1.5) Language concepts, programming design and development using Pascal and assembler language, introduction to large machine architecture, language description techniques. Prerequisite: Programming competency.

274 Software Systems Survey II (Lect 1.5 and Lab 1.5) Introduction to system software; assemblers, macro processors, link editors and loaders, compiler concepts, and operating system concepts. Additional topics include structured programming concepts; and basic file and data structure concepts (indexed sequential organization, hash coding, linked lists, access methods). Prerequisite: Cmp Sc 273 or grade of “B” or better in both Pascal (Cmp Sc 53) and Assembly Language (Cmp Sc 137).

284 Introduction to Operating Systems (Lect 3.0) This survey introduces examples from the broad variety of operating systems including those designed for single-user operation, batched multiprogramming, and time-sharing. Special emphasis is given to Unix. Prerequisite: Cmp Sc 234 or Cmp Sc 274 or Cp Eng 213.

285 Computer Network Concepts and Technology (Lect 3.0) This course will introduce computer network concepts and will survey the current and evolving technology for the construction, operation, and management of those networks. Both hardware and software issues will be addressed with a focus on local area networks. Prerequisite: Cmp Sc 284.

300 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

303 Multimedia Systems (Lect 3.0) This course introduces the concepts and components of Multimedia information systems. Topics include: Introduction to Multimedia Data, Multimedia Date Compression, Techniques and Standards, Indexing and Retrieval, Data Storage Organization, Communication and Synchronization, Applications-Media-On-Demand Systems, Video Conferencing, Digital Libraries. Prerequisite: Cmp Sc 153.

304 Data Base Systems (Lect 3.0) Fundamental concepts of data base including a history of development, definition of terms, functional requirements of complex data structures, data base administrator functions, privacy-confidentiality issues, and future directions. Case studies are coordinated with a detailed examination of several commercially available systems. Prerequisites: (Cmp Sc 238 or 274) and Cmp Sc 158.

306 Software Engineering I (Lect 3.0) Development of methodologies useful in the software engineering classical life cycle. This includes: requirements, design, implementation, and testing phases. These methodologies are reinforced through utilization of a CASE tool and a group project. Prerequisite: Cmp Sc 253.

307 Software Testing and Quality Assurance (Lect 3.0) It covers unit testing, subsystem testing, system testing, object-oriented testing, testing specification, test case management, software quality factors and criteria, software quality requirement analysis and specification, software process improvement, and software total quality management. Prerequisite: Cmp Sc 253.

308 Object-Oriented Analysis and Design (Lect 3.0) This course will explore principles, mechanisms, and methodologies in object-oriented analysis and design. An object-oriented programming language will be used as the vehicle for the exploration. Prerequisite: Cmp Sc 253.

310 Seminar (Variable) Discussion of current topics. Prerequisite: Senior standing.

317 Intellectual Property for Computer Scientists (Lect 3.0) A presentation of the relationship between the law of intellectual property and computer science. Topics include the application of copyright principles to computer programs, protection of computer programs through patents and trade secret law, and the effect of
various agreements which are frequently encountered by the computer scientist. Prerequisite: Senior or graduate standing.

319 Management of Computing Services (Lect 3.0) A thorough survey of the management of computing facilities and services, including selection and evaluation of hardware and software, cost analysis, scheduling, security, privacy, budgets, documentation, effective programming, system planning, project management and data communications. Prerequisite: Consent of instructor required.

328 Object-Oriented Numerical Modeling I (Lect 3.0) A study of object-oriented modeling of the scientific domain. Techniques and methodologies will be developed enabling the student to build a class library of reusable software appropriate for scientific application. Applications will be drawn from mechanics, finance, and engineering. Prerequisites: Cmp Sc 228 and Cmp Sc 153.

329 Object-Oriented Numerical Modeling II (Lect 3.0) A continued study of object-oriented modeling of the scientific domain. Advanced applications include models posed as balance laws, integral equations, and stochastic simulations. Prerequisite: Cmp Sc 328.

330 Automata Theory (Lect 3.0) Description of the extended Chomsky hierarchy and the relation of Chomsky language classes to grammars automata. Use of languages, grammars and automata in the compilation of programming languages. Introduction to decidability. Prerequisite: Cmp Sc 158.

333 The Structure of a Compiler (Lect 3.0) Review of Backus normal form language descriptors and basic parsing concepts. Polish and matrix notation as intermediate forms, and target code representation. Introduction to the basic building blocks of a compiler: syntax scanning, expression translation, symbol table manipulation, code generation, local optimization, and storage allocation. Prerequisites: Cmp Sc 236 or 274 and Cmp Sc 253 (or graduate standing).

343 Interactive Computer Graphics (Lect 3.0) Applications and functional capabilities of current computer graphics systems. Interactive graphics programming including windowing, clipping, segmentation, mathematical modeling, two and three dimensional transformations, data structures, perspective views, antialiasing and software design. Prerequisites: Cmp Sc 228 and 253.

345 Introduction to Robotic Systems (Lect 3.0) Analysis of methods of the design and operation of robotic systems. Identification of three-dimensional objects using digitized images. Arm control: coordinate transformations, feedback control systems, and hardware components. Applications of distributed micro-computers to robotic control. command languages and job assignments. Prerequisites: Math 22, Physics 24, (Cmp Sc 158 or Cmp Sc 228).

347 Introduction to Artificial Intelligence Programming (Lect 3.0) A study of LISP, PROLOG and other special object oriented computer languages for developing intelligent software. In addition knowledge abstraction and representation, searching, backtracking, recursion, and pruning will be presented. A substantial project in expert systems is required. Prerequisite: Cmp Sc 253.

355 Analysis of Algorithms (Lect 3.0) The purpose of this course is to teach the techniques needed to analyze algorithms. The focus of the presentation is on the practical application of these techniques to such as sorting, backtracking, and graph algorithms. Prerequisite: Cmp Sc 253.

360 Deterministic Modeling (Lect 3.0) The course is an in-depth introduction to the basic building blocks of deterministic modeling using the digital computer. Topics include linear programming and nonlinear programming. Problem analysis and algorithm development and implementation will be covered. Programming project required. Prerequisites: Cmp Sc 228 or Math 203 or 208.

366 Regression Analysis (Lect 3.0) Simple linear regression, multiple regression, regression diagnostics, multicollinearity, measures of influence and leverage, model selection techniques, polynomial models, regression with autocorrelated errors, introduction to non-linear regression. Prerequisites: Math 22 and one of Stat 211, 213, 215, 217, or 343. (Co-listed with Stat 346) Co-listed with: Stat 346

376 Operations Research Techniques for Managerial Decisions (Lect 3.0) Introduction to forecasting techniques, linear programming, queueing theory and computer simulation. Application of the digital computer to the solution of problems in the above areas will be emphasized along with an understanding of the basic theoretical concepts. Offered EEC only. Prerequisite: Math 215 and programming competency. Not open to Cmp Sc majors with emphasis in O.R.

378 Introduction to Neural Networks & Applications (Lect 3.0) Introduction to artificial neural network architectures, adaline, madaline, back propagation, BAM, and Hopfield memory, counterpropagation networks, self organizing maps, adaptive resonance theory, are the topics covered. Students experiment with the use of artificial neural networks in engineering through semester projects. Prerequisite: Math 229 or
381 The Structure of Operating Systems (Lect 3.0) The hardware and software requirements for operating systems for uniprogramming, multiprogramming, multiprocessing, time sharing, real time and virtual systems. The concepts of supervisors, interrupt handlers, input/output control systems, and memory mapping are discussed in detail. Prerequisite: Cmp Sc 284.

384 Distributed Operating Systems (Lect 3.0) This is a study of modern operating systems, particularly distributed operating systems. Topics include a review of network systems and interprocess communication, causality, distributed state maintenance, failure detection, reconfiguration and recovery, load balancing, distributed file systems, distributed mutual exclusion, and stable property detection including deadlock detection. A group project in Distributed Systems programming will be required. Prerequisites: Cmp Sc 284 and 253.

385 Computer Communications and Networks (Lect 3.0) Network architecture model including physical protocols for data transmission and error detection/correction, data link concepts, LAN protocols, internetworking, reliable end to end service, security, and application services. Students will implement course concepts on an actual computer network. Prerequisites: Cmp Sc 284 and Cmp Sc 158.

387 Parallel Processing: Architectures, Languages and Algorithms (Lect 3.0) Introduction to parallel (concurrent) processing. Topics will include parallel computer architectures, programming languages which support parallel processing and parallel algorithms. Special emphasis will be placed on the design, analysis and implementation of parallel algorithms. Prerequisites: Cmp Sc 284 and Cmp Sc 355 (co-requisite).

390 Undergraduate Research (Variable) Designed for the undergraduate student who wishes to engage in research. Does not lead to the preparation of a thesis. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the faculty supervisor.

397 Software Systems Development I (Lab 3.0) Class members will work in small teams to develop a complete software system beginning with end-user interviews and concluding with end-user training. Prerequisite: 100 credit hours completed.

398 Software Systems Development II (Lab 3.0) This course is an optional continuation of Cmp Sc 397. Those interested in project management should take this course since participants become officers or group leaders in the class “corporation.” This course is especially important for those going straight into industry upon graduation. Students with coop experience may find this course redundant. Prerequisite: Cmp Sc 397.

Economics

Bachelor of Arts
Bachelor of Science
Master of Arts

Master of Arts available as a cooperative degree program with the Economics Department of the University of Missouri-St. Louis. A maximum of 12 graduate semester hours may be taken at UMR.

Economics has been called the “science of scarcity.” It is the study of how individuals allocate scarce resources for production in order to satisfy their human needs and wants.

Economics can be broadly divided into two categories: microeconomics, the study of how the prices of resources and products are determined within various market and firm structures; and macroeconomics, the study of strategies for managing the U.S. economy within a global environment to attain the goals of full employment, stability and growth.

As an economics major, you will study many of the concepts of microeconomics, including firm structures, markets and market failures, and price determination; and the macroeconomics concepts of inflation, unemployment, international trade and payments, and the effectiveness of government policy.

The economics program allows for the flexibility of selecting either the Bachelor of Arts or Bachelor of Science programs, depending on which best fits your goals and skills. Either degree will provide you with the necessary skills to compete effectively in the job market or succeed in graduate school.

Students wishing to minor in economics may select from a variety of courses tailored to their own needs. Specific tracks are available in energy/technology, international, financial, and business economics, and accounting and finance.

Students majoring in an academic area at UMR other than economics can pursue a secondary B.A. or B.S. in economics to accompany their primary major. See the department chair of economics for more details on this academic option.

The UMR Economics Department has in place a cooperative Bachelor of Science/Master of Science in Accounting with the College of Business and Public Administration at the University of Missouri-Columbia. A student can take at UMR up to 90 hours of the 150 hours required for the BS/MS in accounting. The remaining 60 hours must be taken at Columbia. After completing the 90 hours at UMR the student must take the GRE exam and be admitted into the UMC graduate program.

Faculty

Professors:
Gregory Gelles (Department Chair), Ph.D., University of West Virginia
David Hentzel (Emeritus), Ph.D., Southern Illinois
Walter D. Johnson (Emeritus), Ph.D., University of Oklahoma
Associate Professors:
Richard Bryant, Ph.D., University of California-Davis
Assistant Professors:
Michael Davis, Ph.D., University of California San Diego
Julie Gallaway, Ph.D., Colorado State University
Eun Soo Park, Ph.D., Northwestern University

Bachelor of Arts
Economics

In addition to the general university requirements for a Bachelor of Arts degree, a student must complete:
1) Economics 121, 122, 221 and 222 with a minimum grade of "C" in each.
2) At least 18 additional hours of economics electives, above the 200 level, with a minimum grade of "C" in each.
3) Engineering Management 130 and 131; and Statistics 115; or Economics 111; and Economics 211.

Bachelor of Science
Economics

Requirements for a Bachelor of Science degree are as follows:
1) Economics requirements: at least 33 hours consisting of:
 A) Economics 121, 122, 211, 221, and 222 with a minimum grade of "C" in each.
 B) Electives at least 18 hours with a minimum grade of "C" in each.
2) Mathematics/Statistics, physical, life, and computer science. Minimum of 27 hours consisting of:
 A) Stat 115 or Stat 211 – 3 hours.
 B) At least one course taken in life and one in physical sciences (at least one of the courses must have a laboratory). Approximately 8 hours.
 C) Computer Science 53 or equivalent – 3 hours.
 D) Electives: Approximately 14 hours.
3) Basic Skills and Humanities – 24 hours.
 A) English 20 and English 60.
 B) Engineering Management 130 and 131.
 C) Humanities and the Fine Arts – 12 hours. Foreign language courses may count toward fulfilling this requirement. Courses used to satisfy this requirement must be taken in at least two of the humanities areas.
4) Social Sciences – 12 hours.
 A) History 112, 175, 176, or Pol Sc 90-3 hours
 B) Courses in two social science fields outside the major area – 9 hours.
5) Minor: A minor will be selected from any discipline other than the major, with the approval of the student's advisor.
6) Elective credits: In consultation with the advisor, students will elect sufficient additional courses to complete a minimum of 130 credit hours which may include Math 2 or Math 4 and Math 6.

Bachelor of Arts
Economics (Preparation for Teacher Certification)

The student will fulfill the general requirements for the bachelor of arts degree, except for foreign language; the requirement for the Economics major (teacher certification); and the requirements for Missouri certification in the teaching of Social Studies. See Economics. Contact the Economics Department for advising. Requirements for Teacher Certification as an Economics major are as follows:
1. Prerequisites for the Economics major are Econ 121, 122, 221, 222 with a minimum grade of "C" in each.
2. Econ 111 and 211 with a minimum grade of "C" in each. In addition, twelve hours of electives in economics with a minimum grade of "C". Stat 115 or 211 can substitute for Econ 111.
3. Eng Mg 130 and 131. Eng Mg 230 can substitute for Eng Mg 130 and 131.
4. Thirty-seven hours of general education requirements to include English 20 and 60 and Speech 85; six hours of humanities and fine arts; twelve hours of social science to include History 175 or 176, Political Science 90, Psychology 50, and Geography; seven hours of natural science to include Physics or Geology and Biology 110 with one lab and three hours of mathematics to include Math 2 or 4 or higher.

Business Administration

The Economics Department has in place a cooperative Bachelors degree in Business Administration with the College of Business and Public Administration at the University of Missouri-Columbia. Under this program it is possible for a student to earn a B.S. in Economics from UMR and a B.S. in Business Administration from UMC. Contact the Economics Department at (573) 341-4800 for more information on this business degree option.

Areas of Concentration

Students are encouraged to use their electives, both in economics and in general, to develop areas of concentration beyond the core requirements. Among the possibilities are business, finance, and international affairs. Faculty advisors will assist students in establishing these curricular tracks.

Bachelor of Science*
Suggested Economics Curriculum

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ 121-Principles of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>Eng Mg 130-Accounting I</td>
<td>3</td>
</tr>
<tr>
<td>English 20-Exposition & Argumentation</td>
<td>3</td>
</tr>
<tr>
<td>History 112 or 175 or 176 or Pol Sc 90-3 hours</td>
<td>3</td>
</tr>
<tr>
<td>Math 2, 4, 6 or Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Semester

| Econ 122-Principles of Macroeconomics | 3 |
| English 60-Writing & Research | 3 |
The formal minor in economics is designed to provide students with a solid understanding of economic principles and concepts and the ability to apply this knowledge to a host of economic, public policy and business problems. This program will be of particular benefit to those students whose major field of study may lead them to pursue a management position or later graduate studies in business.

The minor in economics requires the completion of a minimum of 15 hours of economics course work with a grade of "C" or better. Required courses in the minor program include both Economics 121 and 122 and at least one of the intermediate theory courses, Economics 221 and/or Economics 222. The choice of which intermediate theory course depends on which 300 level economic electives the student, in consultation with the department's minor advisor, selects for their program.

Energy/Technology Minor
(15 hours)

Required courses:
- Econ 121-Principles of Microeconomics
- Econ 122-Principles of Macroeconomics
- Econ 221-Intermediate Microeconomic Theory

And 6 hours from:
- Econ 311-Econometrics
- Econ 335-Cost Benefit Analysis
- Econ 340-Environmental & Natural Resource Economics
- Econ 345-Energy Economics

International Economics Minor
(15 hours)

Required courses:
- Econ 121-Principles of Microeconomics
- Econ 122-Principles of Macroeconomics
- Econ 222-Intermediate Macroeconomics Theory

And 6 hours from:
- Econ 322-International Trade
- Econ 351-Economic Development
- Econ 360-Comparative Economic Systems

Financial Economics Minor
(15 hours)

Required courses:
- Econ 121-Principles of Microeconomics
- Econ 122-Principles of Macroeconomics
- Econ 222-Intermediate Microeconomic Theory
- Or Econ 222-Intermediate Macroeconomic Theory

And 6 hours from:
- Econ 320-Money and Banking
- Econ 321-Finance
- Econ 322-International Trade

Business Economics Minor
(15 hours)

Required courses:
- Econ 121-Principles of Microeconomics
- Econ 122-Principles of Macroeconomics
- Econ 221-Intermediate Microeconomics Theory

And 6 hours from:
- Econ 321-Finance
- Econ 330-Public Finance
- Econ 335-Cost Benefit Analysis
- Econ 375-Labor Economics

<table>
<thead>
<tr>
<th>Year</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Semester</td>
<td>Stat 115-Stat for Social Sciences I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Econ 221-Intermediate Microeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Cmp Sc 53-Intro to Programming</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electives (Biological Science)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electives (Humanities)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15</td>
</tr>
<tr>
<td>Second Semester</td>
<td>Econ 222-Intermediate Macroeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Econ 211-Intro to Economic Statistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective (Physical Science)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective (Humanities)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective (Social Science)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>18</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Semester</td>
<td>Econ 311-Econometrics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Economics Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sp & M 85-Principles of Speech</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective (Minor field of study)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective (Science)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15</td>
</tr>
<tr>
<td>Second Semester</td>
<td>Econ 370-Economic Thought</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Econ Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective (Minor field of study)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective (Science)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective (Social Science)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>18</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Semester</td>
<td>Econ 302-Internship**</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Econ Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electives (Minor field of study)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Elective (Science)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15</td>
</tr>
<tr>
<td>Second Semester</td>
<td>Econ Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective (Minor field of study)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective (Humanities)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective (Social Studies)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

* For the Bachelor of Arts, 120 hours are required. An appropriate number of hours in foreign language will be substituted in place of the science electives.

**Optional, does not count as a required elective.

Minor in Economics

Students majoring in other disciplines are encouraged to develop a minor in economics. The formal minor in economics is designed to provide students with a solid understanding of economic principles and concepts and the ability to apply this knowledge to a host of economic, public policy and business problems. This program will be of particular benefit to those students whose major field of study may lead them to pursue a management position or later graduate studies in business.

The minor in economics requires the completion of a minimum of 15 hours of economics course work with a grade of "C" or better. Required courses in the minor program include both Economics 121 and 122 and at least one of the intermediate theory courses, Economics 221 and/or Economics 222. The choice of which intermediate theory course depends on which 300 level economic electives the student, in consultation with the department's minor advisor, selects for their program.

Energy/Technology Minor

(15 hours)

Required courses:
- Econ 121-Principles of Microeconomics
- Econ 122-Principles of Macroeconomics
- Econ 221-Intermediate Microeconomic Theory

And 6 hours from:
- Econ 311-Econometrics
- Econ 335-Cost Benefit Analysis
- Econ 340-Environmental & Natural Resource Economics
- Econ 345-Energy Economics

International Economics Minor

(15 hours)

Required courses:
- Econ 121-Principles of Microeconomics
- Econ 122-Principles of Macroeconomics
- Econ 222-Intermediate Macroeconomics Theory

And 6 hours from:
- Econ 322-International Trade
- Econ 351-Economic Development
- Econ 360-Comparative Economic Systems

Financial Economics Minor

(15 hours)

Required courses:
- Econ 121-Principles of Microeconomics
- Econ 122-Principles of Macroeconomics
- Econ 222-Intermediate Microeconomic Theory
- Or Econ 222-Intermediate Macroeconomic Theory

And 6 hours from:
- Econ 320-Money and Banking
- Econ 321-Finance
- Econ 322-International Trade

Business Economics Minor

(15 hours)

Required courses:
- Econ 121-Principles of Microeconomics
- Econ 122-Principles of Macroeconomics
- Econ 221-Intermediate Microeconomics Theory

And 6 hours from:
- Econ 321-Finance
- Econ 330-Public Finance
- Econ 335-Cost Benefit Analysis
- Econ 375-Labor Economics
Accounting and Finance Minor
(18 hours)
The Accounting and Finance Minor is an interdisciplinary course of study incorporating knowledge from Statistics, Engineering Management and Economics. Students pursuing this minor will be exposed to the interrelationships among statistics, accounting, economics, and finance, and will be introduced to a practical understanding of a number of accounting and business-related topics.

Required courses:
- Econ 211-Intro to Economics Statistics
- Or Stat 213-Stat Methodology in Eng or Stat 215-Eng Stat
- Or Stat 344-Mathematical Stat
- Econ 121-Principles of Microeconomics
- Econ 221-Intermediate Microeconomics
- Eng Mg 230-Managerial Accounting or
- Eng Mg 322-Accounting for Eng Mg

And 6 hours from:
- Eng Mg 252-Financial Management
- Econ 321-Finance
- Econ 323-International Finance
- Econ 330-Public Finance
- Eng Mg 332-Eng Cost Accounting

Economics Courses

100 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Prerequisite: Consent of instructor required.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

111 Business and Economic Statistics I (Lect 3.0) This is an introductory course in business and economic statistics. Our main objective is to familiarize the student with elementary statistical concepts within the context of numerous applications in Business and Economics. We will highlight the primary use of statistics, that is, to glean information from an available sample regarding the underlying population. Prerequisite: Math 2 or Math 4. (Co-listed with Stat 111)

121 Principles of Microeconomics (Lect 3.0) An examination of how resources and products are priced and how income is distributed within various types of market structures.

122 Principles of Macroeconomics (Lect 3.0) A study of alternative strategies for managing the U.S. economy within a global environment, to attain the goals of full employment, stability and growth.

200 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Prerequisite: Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

211 Introduction To Economic Statistics (Lect 2.0 and Lab 1.0) Introduction of econometric techniques for the analysis of economic data. Topics will include collection, manipulation, and presentation of economic and business data, linear, economic models, testing economic hypotheses, and forecasting. Application of all techniques using economic data and statistics software. Prerequisites: Econ 121 or 122, and Math 4 or higher and Stat 115 or Stat 211.

220 History of Economic Thought (Lect 3.0) Contributions of the classical and modern economists to the development of economic thought. Course aims at establishing a synthesis of evolving doctrines which have become the basis of currently accepted economic theory. Prerequisites: Econ 121 and 122.

221 Intermediate Microeconomic Theory (Lect 3.0) Analysis of demand and supply in various market environments using the theories of production, resource pricing, and distribution of income. Emphasis on efficiency attainment and the rationale for market intervention. Prerequisites: Econ 121 and 122.

222 Intermediate Macroeconomic Theory (Lect 3.0) Examines the theoretical framework of national income and product generation, and the use of this theory to construct approaches such as, monetary and fiscal policy to attain economic, political and social goals. Prerequisites: Econ 121 and 122.

230 Law and Economics (Lect 3.0) Study of application of economics analysis to legal concepts, issues and reasoning. Emphasizes the use of microeconomic theory to examine questions of efficacy and efficiency of decisions emanating from three major areas of common law -property rights, contracts and torts. Prerequisite: Econom 121 or equivalent.

300 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Internship (Variable) Internship will involve students applying critical thinking skills and discipline-specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student’s background and the setting. Prerequisite: Senior status; must have completed 24 hours in major.

311 Econometrics (Lect 3.0) Applied statistical analysis of economic phenomena, including identification, least squares bias, and autocorrelation with emphasis on recent estimation procedures. Prerequisites: Stat 115 & 116, Econ 221 and 222.

315 Mathematical Economics (Lect 3.0) Marginal analysis, calculus, and linear algebraic systems are applied in selected advanced topics in economics such as price theory, general equilibrium theory, input-output analysis, activity analysis,
330 Money and Banking (Lect 3.0) Study of the origin, principles, and functions of money, emphasizing the role of banks in the effectuation of monetary policies geared to achieve various economic and political goals. Prerequisite: Econ 221, 222, and Math 8.

320 Money and Banking (Lect 3.0) Study of the origin, principles, and functions of money, emphasizing the role of banks in the effectuation of monetary policies geared to achieve various economic and political goals. Prerequisite: Econ 221, 222, and Math 8.

321 Finance (Lect 3.0) This course provides a rigorous and consistent presentation of the theory of financial decisions. Capital markets are analyzed under assumptions of risk aversion and uncertainty. Models of modern portfolio theory are discussed including the CAPM and the Modigliani-Miller analysis. Prerequisite: Econ 221 or Econ 222.

322 International Trade (Lect 3.0) Analysis of gains from trade; the effects of factor mobility; effects of trade restrictions on trade flow and income distribution; arguments for restricting trade; and effects of trade on economic development, employment and human capital development. Prerequisite: Econ 221.

323 International Finance (Lect 3.0) Examination of the international monetary system, the Balance of Payments, the foreign exchange market, futures and options markets; foreign exchange and other risk management for firms, financing from a global perspective and direct foreign investment. Prerequisite: Econ 221.

330 Public Finance (Lect 3.0) Study of government expenditures and sources of revenue. Particular emphasis is given to governmental decision making—how these decisions affect the economy and the behavior of individuals, firms, and families within the economy; and how these decisions may be evaluated. Prerequisite: Econ 221.

335 Cost-Benefit Analysis (Lect 3.0) Investigates the rationale for cost-benefit analysis within a free enterprise setting. Discussion of market efficiency and failure; determination of social costs and benefits; applications of cost-benefit analysis; and, problems remaining in theory and practice. Prerequisite: Econ 221.

340 Environmental and Natural Resource Economics (Lect 3.0) Optimum use of replenishable and non-replenishable resources, public goods and common resources, public choice vs. private costs, and quality of the environment; emphasis on public policy related to environmental and natural resource economics. Prerequisite: Econ 221.

345 Energy Economics (Lect 3.0) Market structure. World resource development. Supply and demand analysis on energy production and consumption within domestic and global settings. Prerequisite: Econ 221.

351 Economic Development (Lect 3.0) Theoretical analysis of the problem of economic development of the “poor” countries, where two-thirds of the world’s population lives. Treatment of basic problem areas leading to a synthesis of theoretical approaches for the achievement of development. Prerequisite: Econ 221 or 222.

375 Labor Economics (Lect 3.0) Labor as a factor of production, collective bargaining, trade unionism, labor legislation, from the viewpoint of public policy. Prerequisite: Econ 221 or Econ 222.

389 Problems in Economic Policy (Lect 3.0) Advanced course designed for students majoring within the department. Appraisal and analysis of major problems of economic policy. Research and reports. Topics covered vary from year to year. Offered jointly by members of the department. Prerequisite: Seniors with 24 or more hours in Econ.

Education

If you are interested in teaching you may enter the Teacher Education Program. The purpose of the program is to satisfy the continuing need for well-qualified teachers in schools of Missouri and to provide a second career option for graduates.

You may earn a B.A. or B.S. Degree in your chosen certifiable field from UMR and a certificate to teach in the schools of Missouri. This program may be completed in four academic years, although you may elect to attend summer sessions if you wish to carry lighter course loads during the regular academic semesters. Student teaching is arranged with Rolla area public schools.

Majors in chemistry, physics or biological sciences with certification in the science area, history, economics and psychology with certification in social studies, English with certification in language arts, mathematics with certification in mathematics, may earn teaching certificates.

If you are enrolled in UMR’s Schools of Engineering or Mines and Metallurgy, you also have the opportunity for a second career by earning certification in mathematics or science through the Teacher Education Program. You should consult with the coordinator of the Teacher Education Program early in your academic career in order to plan curricula that will satisfy all requirements. You must have at least 22 ACT, 265 on each part of the C-BASE, passing score on PRAXIS, and maintain at least a 2.5 GPA.

For updated information contact the coordinator of UMR Teacher Education Program and look on homepage http://www.umr.edu/~tchreduc

Teacher Education Program

University of Missouri-Rolla is approved by the Missouri State Board of Education to offer professional education programs for purposes of professional certification. Admission to the University does not automatically qualify a student to participate in the professional component of the teacher education program. That participation is granted upon demonstration of a high level of academic and professional competence. Successful participation should result in the student’s achieving certification to teach in Missouri Public Schools. Students who...
receive a certification recommendation must meet the standards for certification eligibility as outlined below:

1) Requirements for eligibility to enroll in professional education courses. Before a student may enroll in the advanced Professional courses eligibility requirements must have been met. The student must have:
 A) A valid ACT score of a 22 on file in the education office as required by the Department of Elementary and Secondary Education.
 B) Cumulative GPA of 2.5 or above.
 C) Completed at least 30 semester hours.

2) Requirements for Admission to/and continuance in the Teacher Education Program. Students who plan to complete teacher certification requirements must be admitted to the Teacher Education Program. Application is automatically made when enrolling in EDU 40, 104, and 174. Admission to the program is required before students are allowed to begin additional courses in the professional education component.

The criteria used to determine admission or rejection to the Teacher Education program are outlined below. In addition to having completed at least 60 semester hours of university course work, the student must have:
 A) A combined (UMR and/or Transfer) GPA of 2.50 or above.
 B) Passes all sections of the Missouri State Board of Education Entry Examination (CBASE) with a CBASE score of 265 or higher on each section and attained a minimum grade of “C” or higher in Speech 85, Eng 20, 60, and Math College Algebra or above.
 C) Completed Educ 40 and 174 with a grade of “C” or higher.

A student’s application for admission to the program is considered when the requirements listed above are completed.

3) Requirements for Assignment to Student Teaching. Successful completion of Student Teaching is a requirement for teacher certification. The criteria used to determine eligibility for Student Teaching are outlined below. The student must have:
 A) Been admitted to the Teacher Education Program.
 B) Patrol and Child Abuse check are on file in the Teacher Education office with no record of a felony.
 C) A combined GPA of 2.50 or above for all college level course work completed.
 D) A combined GPA of 2.5 or above and have a “C” or above in professional classes.
 E) A combined GPA of 2.5 or above in major, and have a "C" or above in each class.
 F) Completed at least 15 hours at UMR, with a GPA of 2.50 or above for all work at UMR before placement in Student Teaching.
 G) Been recommended by the student’s advisor. The recommendation shall be based upon the applicant’s character, personality, and potential for teaching.
 H) Passed PRAXIS according to the Missouri Board of Education requirements.

I) A completed working portfolio that has met all the MO-Step indicators (approved by DESE) and has been approved by the education faculty.

4) Requirements for Certification Recommendation. To be recommended for an initial Missouri teaching certification the student must have:
 A) Successfully completed Student Teaching.
 B) Met all Missouri teacher certification requirements which are in effect at time of certification.
 C) A cumulative combined (both UMR and transfer) GPA or 2.50 or higher.
 D) Completed professional education courses with a GPA of 2.50 or higher (UMR and transfer combined) and no grade lower than a "C".
 E) A grade point average of 2.5 or higher (UMR and transfer combined) on a 4.0 scale in the certificate subject area of endorsement and no grade lower than “C”.
 F) A working portfolio must be developed with all MO STEP indicators met and the portfolio must be approved by education faculty and discipline area.
 G) Fingerprinting completed within three months of application for certification.

General Education Requirements

General education requirements are intended to provide you with the intellectual knowledge and skills for basic education. This body of knowledge and skills is arranged according to two broad categories: systems of symbolic thought and communication represented by linguistic and mathematical studies and systems of intellectual inquiry represented by basic academic disciplines. In addition, you must complete one course in cultural diversity and the general education requirements can be fulfilled at the same time.

The following are generic requirements for all education students. However, any degree requirement not included in these general education requirements must be included in the professional requirements or subject matter requirements for each degree program.

Symbolic Thought and Communications

1) Linguistic Studies (9 semester hours) You are required to take two courses in written communication and one course in oral communication. (You must have a grade of "C" or better in each course.)
2) Mathematical Studies (3 semester hours) The course must be college algebra or above.

Systems of Intellectual Inquiry

1) Humanities At least one course each from two of the following areas required: art, music, philosophy, foreign language, literature and theater.
2) Natural Science One course in biological sciences and one in physical science is required. One of these two courses must include a laboratory.
3) Social and Behavioral Science One course in each of the following areas is required: (1) American History, (2) American Government, and (3) General Psychology.

Secondary Education Certification

In addition to the prescribed general educational courses, if you are preparing to become a secondary school teacher you must complete the following secondary professional education courses and the required courses of at least one teaching major.

You may major in English with English Certification 9-12; Economics, History or Psychology with Social Sciences Certification (9-12); Mathematics with Mathematics Certification (9-12); Biological Sciences, Chemistry or Physics with Certification (9-12).

You must meet UMR degree requirements and, in addition, course requirements for certification. (Those having a degree prior to certification must check with the education office for clarification of requirement procedures.)

The necessary course requirements and arrangements will be coordinated through the education office. Please pick up a sheet from the education office for your discipline area or print from umr.edu/~tchreduc

Elementary Education Certification

All courses are offered for elementary education that are required by the State Department of Education. It is imperative that you contact the coordinator of the education office for details prior to enrollment for Elementary Education courses.

Dr. Evalee Lasater, lasater@umr.edu, 573-341-4692.

Middle School Endorsement

A student may have a second area of certification which is called an endorsement. The required courses with a first area of certification with a degree from University of Missouri-Rolla for middle school endorsement are Education 305, 335, 215 and 221 and English 311.

The student must take Praxis II Middle School-Language Arts exam. If you are preparing to become a secondary school teacher you must complete the following secondary professional education courses and the required courses of at least one teaching major.

You may major in English with English Certification 9-12; Economics, History or Psychology with Social Sciences Certification (9-12); Mathematics with Mathematics Certification (9-12); Biological Sciences, Chemistry or Physics with Certification (9-12).

You must meet UMR degree requirements and, in addition, course requirements for certification. (Those having a degree prior to certification must check with the education office for clarification of requirement procedures.)

The necessary course requirements and arrangements will be coordinated through the education office. Please pick up a sheet from the education office for your discipline area or print from umr.edu/~tchreduc

Elementary Education Certification

All courses are offered for elementary education that are required by the State Department of Education. It is imperative that you contact the coordinator of the education office for details prior to enrollment for Elementary Education courses.

Dr. Evalee Lasater, lasater@umr.edu, 573-341-4692.

Missouri State Board of Education Approved Programs

The following professional education programs have been approved by the Missouri State Board of Education for purposes of teacher preparation and certification. The approval date for the University for Missouri-Rolla is December 1998 through 2003. In the following areas:

- Elementary Education: English 9-12, Mathematics 9-12, Social Science 9-12
- Secondary Education: Biology, Chemistry, Physics 9-12

Note: If changes occur at the State level, then those education requirements will supersede the catalog year and DOES NOT fall under the grandfather clause.

Title II Report 1999-2000

The federal government this year required we report our Title II results for the 1999-2000 year. The report was submitted in April 2001. The University of Missouri-Rolla has a 100% passing rate on the PRAXIS for our completers. The state percent was 98%. A completer is one who has fulfilled all institutions guidelines to be recommended to the state for his/her teaching certificate. We have 100% of the completers teaching with 66% teaching in Missouri.

Education Courses

040 Perspectives in Education (Lect 2.0) This course is an introduction course which will assist students planning to enter the teacher-education program in assessing their personal and professional characteristics required for the teaching profession. It is an overview of the teacher education profession for elementary, middle and secondary.

100 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

102 Educational Psychology (Lect 3.0) Principles of psychology relevant to the field of education. Concepts of human growth and development; the learning process, with special emphasis on abilities and teaching-learning processes; measurement and evaluation of school learning; mental health in the classroom. Observation of children will be included. Prerequisite: Psych 50. (Co-listed with Psych 155) Co-listed with: Psych 155

104 Teacher Field Experience (Lab 2.0) Observation and analysis of instructional techniques and duties in the classroom and school environment by discipline. Student will spend at least 30 contact hours per credit hours in classroom. In addition, library and field experience reports will be made. In addition, Action Research and Seminars will be required. Prerequisite: Educ 40.

164 Aiding Elementary, Middle and Secondary Schools (Lab 2.0) Instructionally-related clinical/administrative and monitorial duties in the classroom during semesters and summer. Student works 30 hours for each credit, with instructor supervising. Also, Action Research and Seminars are required. Prerequisites: Educ 40 and 104.

174 School Organization & Adm for Elementary & Secondary Teachers (Lect 2.0) Required for certification of elementary and secondary teachers. Course content relates to methods of organization and management in the elementary and secondary schools. Prerequisites: Educ 40 and 104.
200 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

202 Problems of Teaching Social Studies (Lect 2.0) A study of current methodologies for teaching in area of specialization.

203 Problems of Teaching Mathematics (Lect 2.0) A study of current methodologies for teaching in area of specialization.

205 Problems of Teaching Science/Chemistry (Lect 2.0) A study of current methodologies for teaching in area of specialization.

206 Problems of Teaching Science/Physics (Lect 2.0) A study of current methodologies for teaching in area of specialization.

207 Problems of Teaching English (Lect 2.0) A study of current methodologies for teaching in area of specialization.

208 Psychological & Educational Development of the Adolescent (Lect 3.0) A theoretical and empirical examination of the psychological and educational development of the adolescent.

211 Child Psychology (Lect 3.0) The psychological, intellectual, social, and physical development of children with emphasis on the cognitive and affective processes. The theory, research and application will be studied. Prerequisite: Educ 40 or Psych 50.

212 Children's Literature (Lect 3.0) Introduction to the study and teaching of children's literature. Emphasis on historical developments, multi-cultural issues and works. Computer intensive. Prerequisites: English 20 and one semester of college literature. (Co-listed with English 212) Co-listed with: English 212

215 Teaching of Reading in Elementary and Middle School (Lect 3.0) Current materials, methods and teaching techniques in teaching reading in elementary and middle school grades. Emphasis on assessing elementary and middle students needs, individualizing programs based on needs, reading in the content areas, study skills and recreational reading as a lifetime habit. Prerequisite: Educ 40.

216 Teaching Reading in Content Area (Lect 3.0) For elementary, middle and secondary school teachers. Specific ways teachers can help students improve reading skills in content areas and ways reading can be taught in reading classes.

217 Analysis and Correction of Reading Difficulties (Lect 3.0) Procedures for diagnosing and correcting reading problems within the classroom. Acquaint preservice teachers preparing for elementary with commercial prepared informal diagnostic instruments, attitude and interest inventories, prescriptive measures, anecdotal records and strategies for corrective reading instruction within the regular classroom for elementary children. Prerequisite: Educ 215.

218 Language Arts for Elementary Teachers (Lect 3.0) Procedures used in teaching integrated language arts in elementary grades. The strategies would be the development of written and oral communication for use in elementary grades. Prerequisite: Educ 40.

219 Art for Elementary Teachers (Lect 3.0) Considers the vital role of art activities and creative experiences in the growth and development of children at their level. Prerequisite: Educ 40. (Co-listed with Art 219) Co-listed with: Art 219

221 Teaching Math in Elementary and Middle Schools (Lect 3.0) The course presents an overview of how children learn mathematics, various techniques in teaching mathematics, and examples of applying these techniques to specific mathematical concepts (such as geometry, measurement, basic operations, statistics and probability, etc.). Prerequisite: Educ 40 or Math 2 or 4. (Co-listed with Math 221) Co-listed with: Math 221

222 Geometric Concepts for Elementary Teachers (Lect 3.0) The course covers methods of teaching the study of points, lines, polygons, similarity, congruence, constructions, and proof in Euclidean Plane Geometry. Transformational geometry and trigonometry are introduced to elementary teachers. Prerequisite: Educ 40 or Math 2 or 4. (Co-listed with Math 222) Co-listed with: Math 222

230 Methods in Physical Education K-4 (Lect 3.0) The course will provide the opportunity to learn how to promote student fitness and skill development while building the foundation for a physically active life through specific activities aimed at the younger child. (Co-listed with Phy Ed 230) Co-listed with: Phy Ed 230

231 Methods in Physical Education 5-9 (Lect 3.0) The course will provide the opportunity to learn how to promote student fitness and skill development while building the foundation for a physically active life through specific activities aimed at the student in transition from childhood to young adulthood (5-9). (Co-listed with Phy Ed 231) Co-listed with: Phy Ed 231

251 Historical Foundation of American Education (Lect 3.0) Development of American educational institutions and ideas, and of social forces that have influenced them. Prerequisites: Educ 40 and Hist 175 or 176.

280 Teaching Methods and Skills in the Content Areas (Lect 6.0) Series of weekly experiences, demonstrations, observations, micro teaching, small group discussions to develop concepts of and skills in a variety of basic teaching tasks. Also, demonstration and lecture exercises in the preparation and use of audio visual materials for teaching. Prerequisites: Educ 40 and 104.

298 Student Teaching Seminar (Lect 1.0) Weekly seminars will be required for all students enrolled in student teaching. Contemporary educational topics, trends, reflective decision making and
other pertinent topics will be covered. Reflection of topics and experiences will be exhibited in papers, portfolios and journal writings. Prerequisites: Meet all requirements for student teaching and concurrently be enrolled in student teaching.

299 Student Teaching (Lect 1.2) Student teaching will be supervised participation, on the level of certification in an assigned Public School. Student teaching is based on 16 weeks (8 weeks in two schools and requires the student teacher to demonstrate his/her ability to be effective decision making teacher and an inquiry learner. Prerequisites: Professional standing and arrangements made previous semester.

300 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

305 Philosophy and Administration of the Middle School (Lect 3.0) This course will acquaint students with aspects of education that are unique to the middle school. Attention will be given to the philosophy underlying the middle school. Finally, leadership theories most appropriate to the middle school will be studied.

315 Advanced Adolescent Development (Lect 3.0) This course is an advanced examination of the intellectual and social development of the adolescent. Theories of adolescent development and their implications for the educative process are covered and debated.

325 Novell Netware 4.1 / 4.11 (Lect 3.0) A practical, hands-on course for Novell network administration including NDS planning, mapping and documentation; system power up/down; security, resource service management; user management from creation to user and workstation maintenance; application software installation and management, and Novell Server installation.

335 Curriculum and Instruction of the Middle School (Lect 3.0) This course advances teachers' understanding of middle school curriculum and instruction. It utilizes knowledge about the nature and needs of young adolescents in developing interdisciplinary learning units, and fosters applications appropriate to experienced teachers' professional assignments. Prerequisite: Graduate standing.

339 Current Issues in Educ: Performance Based Assessment, Beginning (Lect 1.0 and Lab 2.0) This course is intended to provide an understanding of the principles of sound classroom assessment, the five different types of learning outcomes that need to be assessed and the choice of an assessment that best evaluates the achievement targets. Prerequisite: Practicing educator.

340 Current Issues in Educ: Performance Based Assessment, Intermediate (Lect 3.0) This course will provide participants with an understanding of performance-based assessments, how to construct performance tasks and how to construct scoring guides.

341 Current Issues in Educ: Performance Based Assessment, Advanced (Lect 1.0 and Lab 2.0) This course is intended to provide an understanding of balanced classroom assessment. Students will learn to create multiple types of assessment measures for the purpose of evaluating a wide variety of achievement targets. Prerequisite: Practicing educator.

345 Introducing Educators to Computers (Lect 1.0) A basic introduction to computers for K-12 educators. Includes identification and use of hardware components, as well as the fundamentals of using the operating system and basic computer software. Actual software taught will reflect current usage. Prerequisite: Post Bac/practicing teacher.

350 Social Studies in the Elementary School (Lect 3.0) Problems in preparation, teaching of social studies units with suitable materials, techniques for elementary teachers. Prerequisite: Instructor’s approval.

354 Psychology of the Exceptional Child (Lect 3.0) An understanding of the abilities and disabilities of children classified as exceptional, the instructional organization utilized to meet the needs of the exceptional child in the classroom, the import of educational and psychological handicaps upon these children. Guest lectures and field trips. Prerequisite: Psych 50. (Co-listed with Psych 354) Co-listed with: Psych 354

360 Teaching for Responsible Behavior (Lect 3.0) A valuing approach to drug abuse and other high risk behaviors. A study of specific methods, strategies, and techniques to help students from kindergarten to twelfth grade to develop values sharing attitudes and decision-making skills, based on sound information, which will inhibit their involvement in such high risk behaviors as drug abuse. Prerequisite: Senior standing.

English

Bachelor of Arts

Master of Arts

Master of Arts available as a cooperative degree program with the English Department of the University of Missouri-St. Louis. A maximum of 12 graduate semester hours may be taken at UMR.

When you choose English as a major, you will follow a curriculum which includes English and American Literature, as well as linguistics and advanced writing.

The English curriculum involves the study of language, literature, and culture. Topics include literary history; criticism; literary forms such as the short story, novel, drama, and poetry; and detailed examinations of individual authors such as Chaucer, Shakespeare, Milton, Tennyson, Browning, George Eliot, Joyce, Twain.
and Faulkner. Additional genre and theme courses are available, including world literature, science and literature, literature and film, literature by women, law in literature. Linguistics and writing courses include the history and structure of the English language, advanced composition, and desktop publishing.

If you plan to become a secondary school teacher of English-language arts, UMR offers a teacher certification program.

Five minors in English also are available. These minors consist of approved course work in literature, writing, technical writing, literature and film, and literature and science. You can major in any other academic field and minor in these areas.

In addition to taking the courses in the English curriculum, English majors and minors, will have the opportunity to join the writing staffs of campus publications to contribute work to a creative magazine (Southwinds), to participate in the Living Poets Society and Sigma Tau Delta, and to attend lectures given by visiting scholars and writers.

Faculty

Professors:
John Brewer (Emeritus), M.A., University of Illinois
Elizabeth Cummins, Ph.D., University of Illinois
Nicholas Knight, (Interim Dept. Chair), Ph.D., University of Indiana
Jim C. Pogue (Emeritus), Ph.D., University of Missouri-Columbia
James Wise (Emeritus), Ph.D., University of Florida
Douglas Wixson (Emeritus), Ph.D., University of North Carolina

Associate Professors:
Gene Doty, M.A., Emporia State University
Michael Patrick (Emeritus), Ph.D., University of Missouri-Columbia
Marilyn Pogue (Emeritus), Ph.D., University of Missouri-Columbia
Larry Vonalt, Ph.D., University of Florida
Jean Walker (Emeritus), Ph.D., University of Texas

Assistant Professors:
Kristine Swenson, Ph.D., University of Iowa
Janet Zepernick, Ph.D., Pennsylvania State University

Instructors:
John Morgan, M.A., Kansas

Bachelor of Arts

English

Requirements for the English major are as follows:

1) Prerequisites for the English major are English 75, 80, 105, and 106. Six of these hours will also satisfy the General Education Humanities requirements for the Bachelor of Arts degree.

2) Eighteen hours of course work at the 200 or 300 level in English and American literature, including two courses in English Literature before 1800; one course in English Literature after 1800; one other English Literature; and two American Literature courses.

3) One linguistics or writing course at the 200 or 300 level. Because the certification program in secondary education requires two linguistics courses.

4) Capstone course for the major: English 350.

5) Of the twenty-four hours at the 200 or 300 level fifteen hours must be at the 300 level. A maximum of nine hours at the 200 level may count towards the major requirements. For the freshman and sophomore years, consult basic skills and concepts in the Bachelor of Arts degree. For the junior and senior years, consult requirements for a major in English and the requirements for whichever minor is selected.

Bachelor of Arts
(Preparation for Teacher Certification)

The student will fulfill the general requirements for the Bachelor of Arts degree, except for foreign language; the requirements for the English major, (teacher certification); and the requirements for Missouri certification in the teaching of English. See Education. Contact the UMR English Department for advising. Students preparing for Teacher Certification note the requirements for the English major are as follows:

1) English 75, 80, 105, 106.

2) Fifteen hours of course work at the 200 or 300 level in English and American literature, including two courses in English Literature before 1800; one course in English Literature after 1800; and two American Literature courses, including literature for adolescents.

3) Six hours of linguistics.

4) Capstone course for the major: English 350.

5) Twelve hours of writing, including a course in the teaching of writing. Six of these hours will also be satisfied by the General Education Composition requirement for the B.A. degree; three of these hours will also be satisfied by the capstone course.

6) A minimum of fifteen hours must be at the 300 level.

English Minor Curriculum

English offers five minors:

1) Literature. To complete this minor, students must take 12 hours of Literature courses offered by the English Department; at least 9 hours of these must be at the 200 or 300 level.

2) Writing. To complete this minor, students must take English 281, Theory of Written Communication, plus 9 hours selected from the following courses: English 60, 65, 70, 160, 165, 260, 302, 305, or 306.

3) Technical Writing. To complete this minor, students must take English 65, 240, and 260 plus six additional hours of electives selected in consultation with their minor advisor in the English Department.

4) Literature and Film. The minor requires 12 hours, including the following required courses: Art 85: Study of Film (3) and the core course, English 177; Literature and Film (3). In addition, students will take 6 hours of electives in the field of literature and film.
All students who minor in English must have a minor advisor in the English Department, must complete a minor form, and must file it with the English Department. (English 20 Exposition and Argumentation cannot be counted toward an English minor.)

English Courses

001 IEP Basic ESL Skills (0.0 Hours) Focuses on basic reading comprehension with basic vocabulary development, and on listening comprehension. The primary focus of this course is on the development of functional proficiency. For non-native speakers of English. Prerequisites: By placement examinations in ALI; accepted student to UMR. The IEP Program will assess fees for this course.

002 IEP Grammar through Writing (0.0 Hours) Presents basic English grammar to promote a beginning-level understanding of the structure and workings of the English language. Introduces basic writing applications. For nonnative speakers of English. Prerequisites: By placement examinations in ALI; accepted student to UMR. The IEP Program will assess fees for this course.

003 IEP Core ESL Skills (0.0 Hours) Focuses on reading comprehension including vocabulary development, and on listening comprehension through basic academic applications. For non-native speakers of English. Prerequisites: By placement examinations in ALI; accepted student to UMR. The IEP Program will assess fees for this course.

004 IEP Writing & Grammar (0.0 Hours) Introduces more complex writing applications, focusing on basic academic requirements. Focuses on more complex aspects of English grammar. For non-native speakers of English. Prerequisites: By placement examinations in ALI; accepted student to UMR. The IEP Program will assess fees for this course.

005 IEP Academic ESL Skills (0.0 Hours) Focuses on reading comprehension using academic reading materials, on development of academic vocabulary, and on listening comprehension using academic-level lectures. For non-native speakers of English. Prerequisites: By placement examinations in ALI; accepted student to UMR. The IEP Program will assess fees for this course.

006 IEP ESL Writing Workshop (0.0 Hours) Focuses on developing academic writing applications. For nonnative speakers of English. Prerequisites: By placement examinations in ALI; accepted student to UMR. The IEP Program will assess fees for this course.

007 IEP American English Articulation (0.0 Hours) Students who need specific instruction and practice in pronunciation receive heavy drills and activities to improve their articulation of American English. For non-native speakers of English. Prerequisites: By approval; accepted student to UMR. The IEP Program will assess fees for this course.

008 IEP ESL Conversation, Discussion, Presentation (0.0 Hours) Students who need intense practice in verbal activities participate in numerous varied activities to further develop their verbal skills. For non-native speakers of English. Prerequisites: By approval; accepted student to UMR. The IEP Program will assess fees for this course.

011 English as a Second Language-II (Lect 3.0) Elementary English II for non-English speakers. A course concurrent with or subsequent to ESL I, designed to provide more intensive instruction in conversation and reading for international students.

020 Exposition and Argumentation (Lect 3.0) Practice in college level essay writing.

060 Writing and Research (Lect 3.0) Practice in techniques of analytical writing and in methods of research. Prerequisite: English 20.

065 The Technical Writer in Business and Industry (Lect 3.0) Introduction to the role of professional technical writer in business and industry and practice in methods of developing technical materials such as operation and maintenance manuals, field bulletins, grant proposals, inserts, or other technical publications. Prerequisite: English 20.

070 Creative Writing (Lect 3.0) Practice in forms and techniques of poetry and prose fiction, with special attention to narrative development. Prerequisite: English 20.

075 British Literature I: The Beginnings to 1800 (Lect 3.0) A survey of works and authors that explores the way these works represent the chronological period and express the individual concerns and techniques of those authors.

080 British Literature II: 1800 to Present (Lect 3.0) A survey of works and authors that explores the way these works represent the chronological period and express the individual concerns and techniques of those authors.
100 Special Problems and Readings (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

102 World Literature I: From the Beginnings to the Renaissance (Lect 3.0) A survey of representative works and authors from the world’s cultures. (Excludes British and American works).

105 American Literature: 1600 to 1865 (Lect 3.0) A chronological survey that explores the ways the literature represents the concerns of individual authors as well as the history of literature.

106 American Literature: 1865 to Present (Lect 3.0) A chronological survey that explores the ways the literature represents the concerns of individual authors as well as the history of literature.

110 World Literature II: From Renaissance to the Present (Lect 3.0) A study of representative works and authors from the world’s cultures. (Excludes British and American works).

115 Practical Grammar (Lect 3.0) Practical grammar studies traditions and logic that govern the language that we speak and write. It begins with the parts of speech and progresses through the ways acceptable sentences are made from them. It includes a review of punctuation.

160 Technical Writing (Lect 3.0) The theory and practice of writing technical papers and reports in the professions. Prerequisites: English 20 and second-semester junior standing.

165 Engineer as Writer (Lect 3.0) A study of Vitruvius, Frontinus, Abbot Suger, Theophilus, Biringuccio, Da Vinci, Eads. Their projects evaluated according to technical, aesthetic and symbolic criteria. Special emphasis on their contribution to western civilization. Interdisciplinary. Prerequisite: English 20.

177 Literature and Film (Lect 3.0) This course will examine intertextual connections between literature and film, in terms of such things as adaptations, narrative technique and theory, genre, theme, and ideological movements. Prerequisite: English 20.

195 Introduction to Literature and Science (Lect 3.0) This introductory course surveys the theory and development of the interdisciplinary field of literature and science. The course will explore the intersection between literature and science by examining works of science, literature, and criticism in a context of cultural studies. Prerequisite: English 20.

200 Special Problems and Readings (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

210 Seminar (Variable) Discussion of current topics. Prerequisites: English 20 and a semester of college literature.

212 Children’s Literature (Lect 3.0) Introduction to the study and teaching of children’s literature. Emphasis on historical developments, multi-cultural issues and works. Computer intensive. Prerequisites: English 20 and one semester of college literature. (Co-listed with Education 212) Co-listed with: Educ 212

213 Literature for Adolescents (Lect 3.0) Primarily intended for teacher certification students. Selection and organization of materials for teaching literature to adolescents. Emphasizes literature written for adolescents and includes a unit of literature of American ethnic groups. Prerequisites: English 20 and a semester of college literature.

215 Literature by Women (Lect 3.0) A study of writings by women, emphasizing major writers and the development of a female literary tradition. Prerequisites: English 20 and a semester of college literature.

224 Ozark Folklore (Lect 3.0) A study of the research and collection methods of folklore with emphasis on Ozark culture and the literature of the region. Prerequisites: English 20 and a semester of college literature.

225 Science Fiction and Fantasy Literature (Lect 3.0) A study of short stories, poems, or novels which represent the development and the techniques of the science fiction-fantasy genre. Prerequisites: English 20 and a semester of college literature.

226 Utopian Literature (Lect 3.0) A study of the development, themes, and techniques of the Utopian genre primarily narratives from Plato and More to the present. Prerequisites: English 20 and a semester of college literature.

227 Fantasy Literature (Lect 3.0) A study of the development of fantasy literature in the nineteenth and twentieth centuries. The primary focus will be on novels, especially the work of J.R.R. Tolkien. Prerequisites: English 20 and a semester of college literature.

230 Black American Literature (Lect 3.0) The history and development of black literature in America, with special emphasis upon contemporary achievements. Prerequisites: English 20 and a semester of college literature.

235 Humor in American Literature (Lect 3.0) Humor in American literature is explored from its origins in Europe through its expression in such major writers as Franklin, Irving, Poe, Melville,
300 **Special Problems** (Variable) Problems or readings in specific subjects or projects in the department. Consent of instructor required.

301 **Special Topics** (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

302 **Advanced Composition** (Lect 3.0) Instruction and practice in writing expository essays of substantial content and skill, with particular emphasis on the rhetorical approaches of recent findings in language research. Papers required will include critical analyses of literary works, and library research. Prerequisite: English 60 or 160.

303 **Internship** (Variable) Internship will involve students applying critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student’s background and the setting. Prerequisite: Senior status; must have completed 24 hours in the major.

304 **History and Structure of the English Language** (Lect 3.0) An introduction to the study of the English language and its history through Old English, Middle English, and Modern English. Prerequisite: English 20.

305 **A Linguistic Study of Modern English** (Lect 3.0) A descriptive analysis of Modern English—its phonology, grammar, and vocabulary. Prerequisite: English 20.

310 **Seminar** (Lect 3.0) Discussion of current topics. Prerequisites: English 20 and a semester of college literature.

311 **Teaching and Supervising Writing** (Lect 3.0) Students will study contemporary and traditional approaches to writing instruction. The course will give students practice in applying composition theory and research to development of teaching methods, including course syllabi and assignments. Prerequisite: 6 hours of college level writing courses.

312 **Survey of Old and Middle English Literature** (Lect 3.0) Survey of Old English poetry in translation and Middle English literature (excluding Chaucer) through Malory. Special emphasis on culture and language with some attention given to modern reinterpretation of medieval works. Prerequisites: English 20 and a semester of college literature.

315 **Chaucer** (Lect 3.0) A study of Chaucer as a narrative poet by an intensive examination of The Canterbury Tales and Troilus and Criseyde. Prerequisites: English 20 and a semester of college literature.

330 **Sixteenth Century English Literature** (Lect 3.0) A survey of the poetry and prose of England from 1500 to 1600. Prerequisites: English 20 and a semester of college literature.

331 **Seventeenth Century English Literature** (Lect 3.0) A study of major authors (excluding Milton) of prose and poetry in England from 1600 to 1660. Special attention will be paid to John Donne and the metaphysical poets, to Ben Jonson and the Cavalier poets, and to major prose writers such as Francis Bacon, Sir Thomas Browne, and others. Prerequisites: English 20 and a semester of college literature.

337 **The Plays of William Shakespeare** (Lect 3.0) Selected comedies, tragedies, histories, and romances from early middle, and late periods of William Shakespeare’s life. Prerequisites: English 20 and a semester of college literature.

345 **The Restoration & Eighteenth Century** (Lect 3.0) The history, development, and cultural contexts of British literature from 1660 to 1798. Prerequisites: English 20 and a semester of college literature.

350 **Texts and Contexts** (Lect 3.0) Examines the relationships between selected texts written or published in a given year and the context of events of that time. Also explores current critical approaches to such texts and contexts. Writing intensive and Computer intensive. Prerequisites:
English 20 and a semester of college literature; junior standing.

355 Later Nineteenth Century Poetry (Lect 3.0) A survey of English poetry from 1832 to 1900 with special attention to Tennyson, Browning, and Arnold. Prerequisites: English 20 and a semester of college literature.

361 The British Novel I (Lect 3.0) The history, development, and cultural contexts of the British novel from the late seventeenth to the early nineteenth century. Prerequisite: English 20 and a semester of college literature.

362 The English Novel II (Lect 3.0) A study of the development of the novel with major attention given to the Victorian and 20th century novelists. Prerequisites: English 20 and a semester of college literature.

368 Early American Literature (Lect 3.0) This course will follow the development of American literature from its Colonial beginnings (1614) to the rise of Romanticism (1836). The course will pay particular attention to how American writers used literature in defining and even creating the New World. Prerequisites: English 20 and a semester of college literature.

370 American Poetry I (Lect 3.0) A study of significant selected poets of, primarily, the 19th century, with special attention to theme, diction, and form, and to poetry as a compressed image of the human condition. Prerequisites: English 20 and a semester of college literature.

371 The American Renaissance (Lect 3.0) A study of American literature from Poe to Whitman. Prerequisites: English 20 and a semester of college literature.

372 American Poetry II (Lect 3.0) A study of significant selected poets of the 20th century, with special attention to theme, diction, and form, and poetry as a compressed image of the human condition. Prerequisites: English 20 and a semester of college literature.

375 The American Novel I (Lect 3.0) A study of selected, representative novels in chronological sequence from the beginning to the major realists. Prerequisites: English 20 and a semester of college literature.

376 The American Novel II (Lect 3.0) A study of selected, representative novels in chronological sequence from the major realists to the present. Prerequisites: English 20 and a semester of college literature.

379 Mark Twain (Lect 3.0) A study of Mark Twain’s works which may include such topics as Twain’s contribution to American humor and American prose style. Prerequisites: English 20 and a semester of college literature.

380 Contemporary American Literature (Lect 3.0) Studies in American prose (fiction and non-fiction), drama, poetry, and screen plays published within the last fifteen years. Prerequisites: English 20 and a semester of college literature.

382 Contemporary British Literature (Lect 3.0) Studies in British prose (fiction and non-fiction), drama, poetry, and screen plays published within the last fifteen years. Prerequisites: English 20 and a semester of college literature.

390 Undergraduate Research (Variable) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six (6) credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor. Consent of instructor required.

Etymology

Etymology Courses

106 Introduction to Etymology (Lect 3.0) Introduction to etymology in its broadest sense: origin of words, idioms, writing systems, etc. (Last term effective FS2002.)

200 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required. Prerequisite: Consent of instructor.

306 Introduction to Etymology (Lect 3.0) Introduction to etymology in its broadest sense: origin of words, idioms, writing systems, etc. Prerequisite: Any foreign language course or English 20. (First term effective WS2003.)

Foreign Languages

Foreign Languages
(French, German, Russian, Spanish)

UMR offers courses in Spanish, German, Russian, and French. Previous training is not required for language study at UMR.

After two semesters of foreign language study on campus, you should be able to converse on an elementary level. You will be introduced to foreign literature in the second or third semester.

A minor in French, German, and Spanish is available. You may fulfill your B.A. language requirement from any of the four foreign languages offered.

Faculty

Professor:

Gerald Cohen, Ph.D., Columbia University
Lecturers:

Ellen Aramburu, M.A., St. Louis University
Irina Ivliyeva, Ph.D., Moscow University
Gayle Senter, M.A., New York University

Minor in Foreign Languages

A foreign language minor will consist of nine hours of course work, chosen or selected in consultation with
a faculty advisor, beyond the language requirement for the B.A. degree.

The additional nine hours must include one course of masterpieces and two courses on the 300 level in that foreign language.

French

French Courses

001 Elementary French I (Lect 4.0) Introduction to reading, conversation, and grammar. Laboratory optional. Prerequisite: Entrance requirements.

002 Elementary French II (Lect 4.0) A continuation of French 1. Prerequisite: French 1.

080 French Readings and Composition (Lect 4.0) Readings in French narrative literature and composition. Prerequisite: French 2.

090 Scientific French (Lect 3.0) A study of representative writing in the sciences and technology. Emphasis on scientific literature in the student's major field. Prerequisite: French 2.

100 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

110 Basic French Conversation (Lect 2.0) French conversation and oral practice. Prerequisite: French 2.

170 Masterpieces of French Literature (Lect 3.0) Selected major works and movements in French literature. Prerequisite: French 80.

180 Basic French Composition (Lect 3.0) Composition and translations from English. Prerequisite: French 2.

200 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

300 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

310 Seminar (Variable) Discussion of current topics. Prerequisite: Senior standing.

311 Advanced French Conversation (Lect 2.0) Advanced conversation and oral practice. Prerequisite: French 110.

360 French Culture and Civilization (Lect 3.0) A survey of French culture and civilization of the past 2,000 years, including art, architecture, music, literature, geography and politics. Prerequisite: French 170.

370 Survey of French Literature I (Early Period) (Lect 3.0) The history and development of French literature from Les Chansons De Geste through the important philosophers of the 18th century to Beaumarchais. Assigned readings are in French, and lectures are largely in French. Prerequisite: French 170.

375 Survey of French Literature II (Modern Period) (Lect 3.0) 19th and 20th century French literature. Prerequisite: French 170.

378 French Theater (Lect 3.0) A study of French theater including in-depth study of selected plays by, for example, Moliere, Hugo, Giraudoux, and Ionesco. Prerequisite: (One survey class) French 370 or 375.

German

German Courses

001 Elementary German I (Lect 4.0) Introduction to grammar, reading, and conversation. Laboratory required. (One extra hour per week.) Prerequisite: Entrance requirements.

002 Elementary German II (Lect 4.0) A continuation of German 1. Prerequisite: German 1.

070 Classical and Modern German Readings (Lect 4.0) Readings in German narrative literature. Prerequisite: German 2.

090 Scientific German (Lect 3.0) A study of a representative writing in the sciences and technology. Emphasis on scientific literature in the student's major field. Prerequisite: German 2.

100 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

110 Basic German Conversation (Lect 2.0) Conversation and oral practice. Prerequisite: German 2.

170 Masterpieces of German Literature (Lect 3.0) A study of selected major works and movements in German literature. Prerequisite: German 70.

180 Basic German Composition (Lect 3.0) Elementary composition: compositions and written translations. Prerequisite: German 2.

200 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

300 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

310 Seminar (Variable) Discussion of current topics. Prerequisite: Senior standing.

311 Advanced German Conversation (Lect 2.0) Advanced conversation and oral practice. Prerequisite: German 110.
History

Bachelor of Arts/History

Master of Arts available as a cooperative degree program with the History Department of the University of Missouri-St. Louis. A maximum of 12 graduate semester hours may be taken at UMR.

History is a response to the eternal desire of human beings to know more about themselves. For this reason, history students experience a variety of courses, which emphasize the importance of people, their individual choices, their values and their ways of seeing themselves and their world. History majors study man's accumulated heritage from the fossil past to the nuclear present.

This varied course of study includes fundamental survey classes, specific chronological or topical investigations, and special topic seminars. At UMR individuals who hold Ph.D. degrees and are publishing scholars teach virtually all of your history and political science courses. The hallmark of the program is individual attention. In upper-level courses, efforts are made to keep class sizes small enough to enable discussion, which in turn provides for a greater breadth of knowledge and depth of understanding, and for personal student-professor associations.

As a history major you learn to analyze information, communicate effectively, and engage in research. Such skills are useful for careers in government service, business, industry, and social service institutions, as well as being the fundamental requisites for graduate and professional studies beyond the undergraduate degree.

If you plan to become a secondary school history teacher, you can fulfill the general requirements for the Bachelor of Arts degree, the requirements for the history major, and the requirements for Missouri certification in the teaching of history. See Education for further information. Contact the UMR history department for advising.

A minor in history is an option for non-majors who wish to complement their major field of study. This five-course option allows you to gain a broader perspective on human events and to develop your abilities in historical analysis.

The UMR Department of History and Political Science, in a cooperative agreement with the Department of History at UM-St. Louis, offers access to graduate study in history. Through the program, students may take up to 12 of their required hours for an M.A. in history on the UMR Campus. Students must be accepted by both the UM-St. Louis and UMR departments to be fully enrolled in the program. Contact the UMR Department of History and Political Science for further information.

In short, when you study history you not only learn important information and skills but you also are challenged to think, to communicate, and to cope with complexity.

Faculty

Professors:
Wayne M. Bledsoe (Department Chair), Ph.D., Michigan State
Russell D. Buhite, Ph.D., Michigan State
Lawrence Christensen (Distinguished Teaching Professor Emeritus), Ph.D., University of Missouri-Columbia
H.J. Eisenman (Emeritus) Ph.D., Case Western Reserve
Larry D. Gragg, Ph.D., University of Missouri-Columbia
Jack Ridley (Distinguished Teaching Professor), Ph.D., Oklahoma

Associate Professors:
Donald Oster (Emeritus), Ph.D., University of Missouri-Columbia
Lance Williams (Emeritus) Ph.D., Georgia

Assistant Professors:
Diana Ahmad, Ph.D., University of Missouri-Columbia
Patrick Huber, Ph.D., University of North Carolina
Jeffrey W. Schramm, Ph.D., Lehigh University

Bachelor of Arts History

(In addition to general requirements for Bachelor of Arts Degree.)

Major Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>History 175</td>
<td>3</td>
</tr>
<tr>
<td>History 176</td>
<td>3</td>
</tr>
<tr>
<td>History 299</td>
<td>3</td>
</tr>
<tr>
<td>History 310</td>
<td>3</td>
</tr>
<tr>
<td>American History courses</td>
<td>6</td>
</tr>
<tr>
<td>European History courses</td>
<td>6</td>
</tr>
<tr>
<td>History Electives</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
</tr>
</tbody>
</table>

NOTE: 9 hours of the 30 major hours must be taken at the 300 level.
NOTE: Entering students will normally take English 20 either semester of the first year.

History-Teacher Education Program

You may earn a B.A. Degree in History from UMR and certification to teach in the schools of Missouri. This program may be completed in four academic years and student teaching is arranged with public schools within 30 miles of the Rolla campus.

Students interested in the Certification Program should consult with the advisor for History/Education majors in the Department of History or with the Education Coordinator for the University. Students participating in the Certification Program must have at least a 22 ACT, 265 C-BASE, PRAXIS, and maintain at least a 2.5 GPA. You must also submit a portfolio, complete a background check and fingerprinting and successfully complete the required courses.
History Minor Curriculum

The History/Political Science Department offers a minor in history. To qualify, all students must take 15 hours of course work in history to include: (1) History 111 or 112; (2) 175 or 176; (3) An additional 9 hours of History 200 or 300 level courses.

History Courses

100 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

111 Early Western Civilization (Lect 3.0) Growth and development of ideas and institutions of western culture from prehistoric man to the voyages of discovery.

112 Modern Western Civilization (Lect 3.0) A continuation of History 111 to the present with special emphasis on the philosophical, political, social, and economic backgrounds of modern society.

175 American History to 1877 (Lect 3.0) Survey of the history of the American colonies and United States from colonial times through Reconstruction.

176 American History Since 1877 (Lect 3.0) Survey of the history of America since Reconstruction.

200 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

209 A Medieval Window: The Gothic Cathedral (Lect 2.0) A study of British cathedrals and abbeys as symbols of the Medieval Era in Europe. This course will focus on various components of the cathedral such as stained glass and architectural elements.

210 Seminar (Variable) Discussion of current topics.

220 Making of Modern Britain (Lect 3.0) A survey of modern Britain from the era of Restoration and Glorious Revolution (1660-1689) to the present. Major themes include the social, intellectual, cultural, political and economic aspects of modern and contemporary Britain. Prerequisite: Hist 112.

222 The Making of Modern France (Lect 3.0) A survey of modern France from the era of Louis XIV (1660-1715) to the present. Major themes include the social, intellectual, cultural, political and economic aspects of modern and contemporary France. Prerequisite: Hist 112.

224 Making of Modern Russia (Lect 3.0) A survey of modern Russia from the era of “Westernization” and Peter the Great (1660-1725) to the present. Major themes include the social, intellectual, cultural, political and econom-ic aspects of modern and contemporary Russia, with emphasis on the Soviet period. Prerequisite: Hist 112.

225 European Diplomatic History 1814 - Present (Lect 3.0) A survey of European Diplomatic History beginning with The Congress of Vienna to the present, including the Congress system, the Eastern Question, the shift to realpolitik, the diplomatic origins and concluding conferences of the World Wars and Cold War diplomacy. Prerequisite: Hist 112.

237 Contemporary Political Thought (Lect 3.0) A survey of Western ideas that have contributed to our contemporary understanding of the world: liberalism, conservatism, Marxism-Leninism, democratic socialism and fascism. This course shall explore the impact of ideas on American politics, including the relationship between public policy and political philosophy; this will be accomplished through the study of American political institutions using an elite model of politics. Prerequisite: Hist 175 or 176 or Pol Sc 90. (Co-listed with Pol Sc 237) Co-listed with: Pol SC 237

259 History of Missouri (Lect 3.0) Survey of Missouri’s political, social, economic and cultural development from the beginning of settlement to the present. Prerequisite: Hist 175 or 176.

270 History of Technology (Lect 3.0) Technological achievements in the Western world from prehistoric times to the present; topics include agriculture, building and construction, communications, transportation, power sources, the Industrial Revolution, relationships between science and technology, factors in invention and innovation and sociocultural effects. Prerequisite: Hist 111 or 112 or 175 or 176.

274 Recent American Art and Technology (Lect 3.0) This survey course investigates the relationships between recent American art and technology since 1945 and, as a consequence, technology’s impact on American culture and society. Using examples of painting, sculpture and architecture the course treats the vernacular tradition, the use of technology in art, technological images in art, the impact of technology on art. Prerequisite: Hist 175 or 176 or Pol Sc 90.

275 History of Science (Lect 3.0) A survey of science from ancient times to the 20th century focusing on the leading conceptual developments within science, the scientific revolution, and science’s role in society. Prerequisite: Hist 111 or 112 or 175 or 176.

280 The American Military Experience (Lect 3.0) A study of American military history, strategy, policy and institutions from the colonial period to the present. War will be viewed in the mainstream of history with emphasis on the American Revolution, the Civil War, and the 20th century conflicts. Prerequisite: Hist 112 or 175 or 176 or Pol Sc 90.

299 Historiography (Lect 3.0) Historical interpretation from Herodotus to the present. Emphasis will
History — 89

be placed on reading the works of prominent historians in analyzing the major developments in historical writing. Familiarization with historical source material will be another feature of this course. Prerequisite: Sophomore standing.

300 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Internship (Variable) Internship will involve students applying critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student's background and the setting. Prerequisites: Senior status; must have completed 24 hours in major.

310 Seminar (Variable) Discussion of current topics. Prerequisite: Senior standing.

312 Tudor and Stuart England (Lect 3.0) A study of England 1485 - 1689 covering the social, political, religious, and cultural developments. Prerequisite: Hist 111 or 220.

316 The American Presidency (Lect 3.0) Historical development of the presidency; emphasis on the constitutional powers and limits of the office and the political contextual variables that influence presidential behaviors. Prerequisite: Pol Sc 90 or Hist 176. (Co-listed with Pol Sc 316) Co-listed with: Pol SC 316

321 Ancient Greece (Lect 3.0) Aegean and Greek Civilization from Homeric times to the Roman Conquest of the Hellenic World. Designed for the student who wishes to understand the fundamental conditions of classical life and to comprehend the ideas that inspired action. Emphasis will be on social, intellectual, political and religious aspects of the classical world. Prerequisite: Hist 111.

322 Ancient Rome (Lect 3.0) Rome 509 B.C. to 337 A.D. The Roman world from the founding of the Republic through the reign of Constantine. Special emphasis is on the transformation of classical culture during the Republican and Imperial ages. Prerequisite: Hist 111.

323 Medieval History I (Lect 3.0) The Early Middle Ages, 284 A.D.-753 A.D., transition from ancient to Medieval civilization. The fundamental differences between Roman and Medieval ideas, institutions and life. The triumph of Christianity, the conditions which made this triumph possible and its role in the development of Western Europe. Prerequisite: Hist 111.

324 Medieval History II (Lect 3.0) Medieval Civilization, 11th-13th centuries. The transition from Medieval to Modern world, developments in the political, social and economic institutions of the Medieval world and their enduring effect on Western European Civilization, conflict of faith and reason during this period. Prerequisite: Hist 111.

325 History of Renaissance Thought (Lect 3.0) Concentrates on the political, religious, and social thought of the Renaissance. Particular emphasis on the revival of the classics, the spread of humanistic values, and reform efforts during the period with relationship to the material basis of society. Prerequisite: Hist 111 or 112.

327 Europe in the Age of the French Revolution and Napoleon (Lect 3.0) An in-depth examination of the causes, courses and results of the French Revolution and the Napoleonic Era (1789-1815). The impact of the age of the French Imperium upon European economic, diplomatic, intellectual, political and social development. Prerequisite: Hist 112.

328 Foundations of Contemporary Europe 1815-1914 (Lect 3.0) Europe after Napoleon, development of democracy and nationalism, revolutionary movements and leaders, unification of Italy and Germany, national developments of the major powers and the road to the First World War are the bases of this course. Prerequisite: Hist 112.

329 Contemporary Europe (Lect 3.0) First World War, the Versailles Peace Settlement and its aftermath, the Soviet, Fascist and Nazi revolutions and regimes, Western culture between the wars, the Second World War, the age of the atom and Cold War. Prerequisite: Hist 112.

340 Religion and Witchcraft in Early America (Lect 3.0) An examination of the role of occult ideas and practices in the religious life of early Americans. Emphasis placed upon Puritan beliefs which contributed to seventeenth century effort to eradicate witchcraft. Prerequisite: Hist 175 or Hist 112.

341 Colonial America (Lect 3.0) Political and social trends in America to 1754. Emphasis placed upon native American culture, Spain and France in America, population trends, family, religion, class structure, economic change, social conflict, and the development of individualism in early America. Prerequisite: Hist 175.

342 Revolutionary America, 1754-1789 (Lect 3.0) An examination of the causes and consequences of the American Revolution. Emphasis placed upon the social conditions in America which contributed to both the Revolution and the writing of the 1787 Constitution. Prerequisite: Hist 175.

343 Age of Jefferson and Jackson (Lect 3.0) Economic, political, social and constitutional development of the early American republic; the Federalist and Jeffersonian periods, Jacksonian Democracy, rise of sectionalism. Emphasis placed on historical interpretation and historiography of the period. Prerequisite: Hist 175.

344 Civil War and Reconstruction (Lect 3.0) Lecture, discussion and readings on the causes and consequences of the American Civil War.
Focuses on the prewar North-South sectional rivalry: impact of the war on American society, government and politics. Reconstruction including the development of racial crisis in United States history. Prerequisite: Hist 175.

347 Origins of Modern America, 1877-1920 (Lect 3.0) Examines the industrial transformation of America, including the Gilded Age, The Populist-Progressive reform movement, urbanization, and the technological, social, cultural and intellectual responses to industrialization which provided the foundations for modern America. Prerequisite: Hist 176.

348 Recent United States History (Lect 3.0) Examines America's modern age including the New Era, the New Deal, Internationalism, post-war affluence, the post-industrial era as well as the cultural, intellectual, social and technological features of American society from 1920 to the present. Prerequisite: Hist 176 or 347.

351 American Intellectual History I (Lect 3.0) Deals with the ideas of intellectuals and the thought of popular culture, and with possible relationships between the two. Among the climates of opinion studied are the reformation in America, the Enlightenment, and Romanticism. Prerequisite: Hist 175.

352 American Intellectual History II (Lect 3.0) The ideas of intellectuals and the thought of popular culture, and possible relationships between the two. Among the climates of opinion studied are the Gilded Age, Darwinism, Progressivism, the Twenties, the Great Depression, the Affluent Fifties, the Counter-Culture Sixties. Prerequisite: Hist 176 or 351.

353 History of the Old South (Lect 3.0) Analysis of the southern region of the United States between 1607-1861 with emphasis on economic, social, political, intellectual, and racial themes. Prerequisite: Hist 175.

354 History of the Modern South (Lect 3.0) Analysis of the southern region of the United States between 1877 and the present with emphasis on economic, social, political, intellectual, and racial themes. Prerequisite: Hist 175.

355 The History of Black America (Lect 3.0) Examines Afro-American experience from the beginnings of the slave trade to the present. Cultural, economic, and civil rights topics are treated. Prerequisite: Hist 175 or 176.

356 History of the American City (Lect 3.0) A social, political, economic and cultural survey of the American city from colonial times to late-20th century. Urbanization is approached as an independent variable in American history. Prerequisite: Hist 175 or 176.

357 The History of the West (Lect 3.0) This class examines the American settlement of the TransMississippi West. Areas to be considered include cattle, mining, exploring, women, and Native Americans. Traditional and contemporary views of the West will be analyzed. Prerequisite: Hist 175 or 176.

358 American Constitutional History (Lect 3.0) Emphasis on the history of American legal and constitutional systems. The role of the Supreme Court will be examined and critical constitutional decisions analyzed. Special emphasis will be on the history of the federal judiciary from 1801 to the present. Prerequisite: Hist 175 or 176.

360 History of the American Family (Lect 3.0) Beginning with an examination of the family in Western Europe c. 1600, the course traces the development of the family in America to the present. Prerequisite: Hist 175 or 176.

374 Twentieth Century Technology and Society (Lect 3.0) An investigation of technological achievements since 1900 and their effects on society. Topics include: education in a technological society, technology and the state, the individual and the environment, cybernation, agriculture, scientific and industrial research. Prerequisite: Hist 112 or 176.

380 20th Century Americans in Combat (Lect 3.0) Through lectures, films, readings, exams, film reviews and discussions, this course examines the American military and combat experience throughout much of the twentieth century. The ultimate goal of the course is for students to understand the realities of warfare and its effect on ordinary Americans as well as American society. Prerequisite: Hist 175 or 176 or 112.

383 American Diplomatic History (Lect 3.0) The history of American foreign relations, broadly conceived, from the Revolution to the present. The first half of the course will survey American diplomatic history to 1941. The second half will analyze the major themes in U.S. foreign policy since WWII, with special emphasis on the problems of national security and the realities of power politics in the Cold War era. Prerequisites: Hist 175, 176, or Pol Sc 90. (Co-listed with Pol Sc 383)

Latin

Latin Courses

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.
Mathematics & Statistics

Bachelor of Science (Applied Mathematics)

Master of Science (Applied Mathematics)

Master of Science for Teachers (Mathematics)

Doctor of Philosophy (Mathematics)

Emphasis areas at the Bachelor of Science level include actuarial science, algebra/discrete mathematics, applied analysis, computational mathematics and statistics. Emphasis areas at the doctor of philosophy level of mathematics include analysis, differential and functional equations, and statistics.

Mathematics is a universal language. It is one which scientists use to express ideas and relationships concisely. It is a tool, which they use to investigate problems.

As a mathematician, you will set up and analyze models of physical situations in order to deduce new information and to predict results.

Most students pursue their study of mathematics through a differential equations course and then elect courses in specialized areas such as algebra, analysis, geometry, topology, and statistics. Supporting study in technical electives is required from other departments. Such study includes analytical mechanics, communication theory, control theory, and others.

Your classes, for the most part, will be held in the Rolla Building. You will be provided data processing and computational services to solve complex problems through the computer facilities. (See computer science description.)

You will find that mathematics contributes to the growth in knowledge in most areas. Your program at UMR will emphasize breadth in mathematics and depth in an associated area of application.

Faculty

Professors:
- Leon Hall (Department Chair), Ph.D., Missouri-Rolla
- W. Thomas Ingram, Ph.D., Auburn

Associate Professors:
- Wlodzimierz Charatonik, Ph.D., Warsaw
- Steve Clark, Ph.D., Tennessee
- Roman Dwilewicz, D.Sc., Warsaw
- Gaoxiong Gan, Ph.D., Kansas State
- David Grow, Ph.D., Nebraska-Lincoln
- Roger Hering, Ph.D., Southern Illinois
- E. Matt Insall, Ph.D., Houston
- Vy Le, Ph.D., Utah
- Ilene Morgan, Ph.D., Penn State

Timothy Randolph, Ph.D., Oregon
Robert Roe, Ph.D., Wyoming
V.A.Samaranayake, Ph.D., Kansas State

Assistant Professors:
- Miron Bekker, Ph.D., Institute of Mathematics, NAS, Kiev
- Martin Bohner, Ph.D., Ulm
- Gary Gadbury, Ph.D., Colorado State
- Mohamed Ben Hadj Rhouma, Ph.D., Missouri-Columbia

Instructors:
- Tom Akers, M.S., Missouri-Rolla
- Mary Kirgan, M.S.T., Missouri-Rolla

Emeritus Faculty:
- Lee Bain, Ph.D., Oklahoma State
- August Garver, M.S., Missouri-Rolla
- Louis Grimm, Ph.D., Minnesota
- Glen Haddock, Ph.D., Oklahoma State
- Troy Hicks, Ph.D., Cincinnati
- Charles Johnson, Ph.D., Kansas
- James Joiner, Ph.D., George Peabody
- Jagdish Patel, Ph.D., Minnesota
- Anthony Penico, Ph.D., Pennsylvania
- Lyle Pursell, Ph.D., Purdue
- Jack Scrivner, M.S., Missouri-Rolla
- Caslav Stanojevic, Sc.D., Belgrade
- Selden Trimble, Ph.D., Kentucky

Bachelor of Science

Applied Mathematics

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 1-Intro to Math</td>
<td>1</td>
</tr>
<tr>
<td>Math 8-Calculus w/Analytic Geometry I</td>
<td>5</td>
</tr>
<tr>
<td>Chem 4-Intro to Lab Safety & Haz Mat</td>
<td>1</td>
</tr>
<tr>
<td>English 20-Exposition & Argumentation</td>
<td>3</td>
</tr>
<tr>
<td>Basic ROTC (if elected)</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 21-Calculus w/Analytic Geometry II</td>
<td>5</td>
</tr>
<tr>
<td>Science Requirement</td>
<td>5</td>
</tr>
<tr>
<td>Cmp Sc 53 or 73 & 77 or Cmp Sc 74 & 78</td>
<td>3</td>
</tr>
<tr>
<td>Foreign Language Requirement</td>
<td>4</td>
</tr>
<tr>
<td>Basic ROTC if elected</td>
<td>0</td>
</tr>
</tbody>
</table>

| Total | 17 |

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 22-Calculus w/Analytic Geometry III</td>
<td>4</td>
</tr>
<tr>
<td>Math 208-Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Statistics Requirement</td>
<td>3</td>
</tr>
<tr>
<td>Physics 21-General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Physics 22-General Physics Lab</td>
<td>1</td>
</tr>
<tr>
<td>English 60-Writing & Research</td>
<td>3</td>
</tr>
<tr>
<td>Basic ROTC (if elected)</td>
<td>0</td>
</tr>
</tbody>
</table>

| Total | 18 |

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 204-Elementary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Math 209-Foundations of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Econ 121-Microecon or 122-Macroecon</td>
<td>3</td>
</tr>
<tr>
<td>Physics 25-General Physics II</td>
<td>4</td>
</tr>
</tbody>
</table>
Physics 26-General Physics Lab 1
Computer Science Requirement2,3 3
Basic ROTC (if elected) .. 0
17

JUNIOR YEAR
First Semester
Math 309-Advanced Calculus I1 3
Literature .. 3
Electives-Math or Stat1,7,9 .. 3
Electives-Technical10 ... 3
15

Second Semester
Math 311-Advanced Calculus II1 3
Literature .. 3
Electives-Math or Stat1,7,9 .. 3
Electives-Technical10 ... 3
15

SENIOR YEAR
First Semester
Math 361-Problem Solving Pure Math1,11 1
Math 371-Problem Solving Applied Math1,11 1
Electives-Math or Stat1,7,9 .. 3
Electives-Technical10 ... 6
Electives .. 6
17

Second Semester
Math 381-Great Theorems in Math1,11 1
Electives-Math or Stat1,7,9 .. 3
Electives-Technical10 ... 3
Electives .. 9
16

1) A minimum grade of "C" is required by the department in each course counted toward the Math/Stat requirement for the B.S. in Applied Mathematics. Moreover, the department requires that an average of at least two grade points per credit hour must be obtained for all courses taken within the department.
2) May be met by History 112, 175, 176, or Pol Sc 90.
3) A modern language approved by the advisor (six hours credit is acceptable from transfer students.) Requirement may be met by examination or, with approval of the department, by three years of foreign language in high school.
4) Basic ROTC may be elected in the freshman and sophomore years, but is not creditable toward a degree. Up to six credit hours of advanced ROTC may be credited as free electives toward a degree.
5) May be met by Chem 1 and 2 or by Bio Sc 110 and 112.
6) May be met by Stat 215, 217, or 343.
7) No course may be used to satisfy more than one degree requirement.
8) May be met by Cmp Sc 153, 158 or 228.
9) The student must choose two from the following five groups and then complete six hours in each of the chosen groups (1) Math 305, 306, 307, 308; (2) Math 315, 330, 351, 385; (3) Math 302, 303, 322, 325, 351, 383; (4) Stat 343, 344, 346, 353; (5) Cmp Sc 228, 328, 329, Stat 346, Math 303, Econ 321.

10) Courses in chemistry, physics, mechanics, geology, computer science, economics or engineering approved by advisor.
11) The three courses Math 361, 371, and 381, constitute the Capstone experience for mathematics majors.

Math Minor Curriculum
The minor will consist of at least 12 hours of mathematics/statistics courses* at the 200 or higher level and passing all of them with at least a grade of "C". Further, at least 3 of the 12 hours must be at the 300 or higher level. Finally, Math 204 and Math 229 cannot both be counted, Math 203 and Math 208 cannot both be counted, and at most one of Stat 211, Stat 213, Stat 215 and Stat 217 may be counted.

*Computer Science 228 (Introduction to Numerical Methods) may be substituted for one of these courses.

Emphasis Areas at the Bachelor of Science Level12

Actuarial Science Emphasis Area12
Required courses:
Stat 353-Statistical Data Analysis 3
Stat 346-Regression Analysis .. 3
Econ 121 or 122 .. 3
Econ 222 or Econ 321 ... 3

In addition, to complete the Actuarial Science emphasis area, the student is required to pass the Actuarial Science exam, administrator by the Society of Actuaries.

Algebra/Discrete Mathematics Emphasis Area12
Required courses:
Math 305-Modern Algebra I ... 3
Math 306-Modern Algebra II .. 3
Math 307-Combinatorics ... 3
Math 308-Linear Algebra II .. 3
Stat 343-Probability & Statistics 3
and three hours from:
Stat 344-Math Statistics .. 3
Cmp Sc 228-Intro to Numerical Methods 3
Cmp Sc 330-Formal Language & Automata Theory I 3
Cmp Sc 355-Analysis of Algorithms 3

Computational Mathematics Emphasis Area12
Required courses:
Stat 353-Stat Data Analysis ... 3
Stat 346-Regression Analysis .. 3
Cmp Sc 228-Intro to Numerical Methods 3
and six hours from:
Math 302-Intermediate Differential Equations 3
Math 303-Mathematical Modeling 3
Math 325-Partial Differential Equations 3
Applied Analysis Emphasis Area12

Required courses:
- Cmp Sc 228-Intro to Numerical Methods \hspace{1em} .3

\textit{and} two of groups 3, 4, and 5 under Mathematics of Statistics electives must be satisfied.

\textit{and} choose Technical Electives and Free Electives to satisfy one of the following two options:

Engineering Option (A)

Required courses:
- Bas Eng 50-Statics \hspace{1em} .3
- Bas Eng 110-Mechanics of Materials \hspace{1em} .3

\textit{And one of the following two courses:}
- Bas Eng 150-Eng Mech-Dynamics \hspace{1em} .3
- EMech 160-Eng Mech-Dynamics \hspace{1em} .3

And nine hours from the following list. Courses, which have any of the listed courses as prerequisites, may also be used to fulfill this requirement. Courses with an asterisk (*) are co-listed in more than one department.

- Ae Eng 213-Aerospace Mechanics I \hspace{1em} .3
- Ae Eng 207-Vibrations I* \hspace{1em} .3
- Ae Eng 313-Interm Dyn of Mech & Ae Sys \hspace{1em} .3
- Ae Eng 314-Spaceflight Mech \hspace{1em} .3
- Ch Eng 27-Chemical Eng Calculations \hspace{1em} .3
- Ch Eng 141-Chem Eng Thermodynamics I \hspace{1em} .3
- Cv Eng 218-Structural Analysis \hspace{1em} .3
- El Eng 281-Elec Cir or El Eng 282-Elec Cir & Mach \hspace{1em} .3
- Mc Eng 213-Machine Dynamics \hspace{1em} .3
- Mc Eng 219-Thermo or Mc Eng 227-Thermal Analysis \hspace{1em} .3
- Mc Eng 331-Thermo Fluid Mech II* \hspace{1em} .3
- Nu Eng 203-Interactions of Radiation w/Matter \hspace{1em} .3
- Nu Eng 303-Reactor Physics I \hspace{1em} .3
- Pe Eng 141-Prop of Hydrocarbon Fluids \hspace{1em} .3
- Pe Eng 320-Fund of Petro Reservoir Simulation \hspace{1em} .3
- Cv Eng 230-Fluid Mech or Nu Eng 221-Reactor Fluid Mech or Mc Eng 231-Thermo Mech I \hspace{1em} .3
- Cv Eng 323-Class & Matrix Meth of Struct Analysis \hspace{1em} .3
- Cv Eng 333-Intermediate Hydraulic Eng \hspace{1em} .3
- El Eng 368-Intro to Neural Networks & Appl \hspace{1em} .3
- EMech 307-Finite Element Approx I \hspace{1em} .3
- EMech 311-Intro to Continuum Mechanics \hspace{1em} .3
- EMech 334-Theory of Stability I* \hspace{1em} .3
- EMech 354-Variational Form of Mech Problems \hspace{1em} .3
- Ge Eng 315-Geometries \hspace{1em} .3
- Geo 286-Intro to Geop Data Analysis or Geo 286Intro to Geop Data Analysis \hspace{1em} .3
- Geo 321-Potential Field Theory \hspace{1em} .3

Physics Option (B)

Required courses:
- Physics 207-Modern Physics I \hspace{1em} .3
- Physics 307-Modern Physics II \hspace{1em} .3

\textit{And take at least nine additional hours of physics courses at the 200 level or above. Note that the requirements for a minor in physics will be satisfied with this option.}

Statistics Emphasis Area12

Required courses:
- Stat 343-Prob & Stat \hspace{1em} .3
- Stat 344-Math Stat \hspace{1em} .3
- Stat 346-Regression Analysis \hspace{1em} .3
- Stat 353-Stat Data Analysis \hspace{1em} .3

\textit{and complete 6 hours from:}
- Bio Sc 231-General Genetics \hspace{1em} .3
- Cmp Sc 228-Intro to Numerical Methods \hspace{1em} .3
- Eng Mg 385-Statistical Process Control \hspace{1em} .3

\textit{and complete either A or B:}

- (A) Complete the following two courses:
 - Math 315-Intro to Real Analysis \hspace{1em} .3
 - Math 351-Intro to Complex Variables \hspace{1em} .3

- (B) Complete 6 hours from:
 - Math 303-Math Modeling \hspace{1em} .3
 - Math 307-Combinatorics & Graph Theory \hspace{1em} .3
 - Math 308-Linear Algebra II \hspace{1em} .3

12 Note: It is not required that students complete an emphasis area to obtain the Bachelor of Science degree in Applied Mathematics. The emphasis area requirements often specify most, if not all, of the electives in Mathematics, Statistics and Computer Science as well as many technical or free electives.

Mathematics Courses

001 Introduction to Mathematics (Lect 1.0)

Introduction to the department, program of study, methods of study, and an introduction of the various areas of mathematics. Required of fall semester freshman mathematics majors.

002 College Algebra (Lect 5.0)

Contains the same topics as covered in Math 4, and preceded by a thorough review of the basic principles of algebra. Prerequisite: By placement examination.

003 Fundamentals of Algebra (Lect 3.0)

Basic principles of algebra including the number line and an introduction to equations and inequalities, polynomials, rational expressions, exponents and radicals, the quadratic formula and functions. Prerequisite: Entrance requirements.

004 College Algebra (Lect 3.0)

A study of linear equations, rational functions, radicals, quadratic equations, inequalities, determinants, progressions, theory of equations, permutations, combinations, and the binomial theorem. Prerequisite: By placement examination.

006 Trigonometry (Lect 2.0)

A study of the trigonometric functions, radian measure, graphing trigonometric functions, identities, trigonometric equations and inverse trigonometric functions. Solutions of general triangles and trigonometric representation of complex numbers are included. Prerequisite: By placement examination.

008 Calculus with Analytic Geometry I (Lect 5.0)

A study of limits, continuity, differentiation and integration of algebraic and trigonometric functions. Applications of these concepts in physical as well as mathematical settings are considered.
Prerequisites: Math 6 and either of Math 2 or 4. Also by placement examination.

010 Introduction to Mathematical Ideas (Lect 3.0) A study of the nature of mathematics and its relation to western culture, primarily for students majoring in humanities or the social sciences, number systems, sets, and functions. Selected topics from algebra, trigonometry, finite mathematics, and computer science. Prerequisite: Two years high school mathematics.

021 Calculus with Analytic Geometry II (Lect 5.0) A continuation of the study of differentiation of algebraic and trigonometric functions. The course also includes differentiation and integration of other transcendental functions, techniques of integration, improper integrals, conic sections, polar coordinates and an introduction to sequences and series. Prerequisites: Math 8 and 6 or by placement examination.

022 Calculus with Analytic Geometry III (Lect 4.0) The calculus of vector-valued functions is introduced. Partial differentiation and multiple integration are studied along with curves and surfaces in three dimensions. Additional topics selected from: line integrals, surface integrals, Green’s theorem and the divergence theorem. Prerequisite: Math 21.

100 Special Problems (Variable) Problems or readings in specific subjects or projects in the department. Consent of instructor required.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

200 Special Problems (Variable) Problems or readings in specific subjects or projects in the department. Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

202 Cooperative Work Training (Variable) On-the-job experience gained through cooperative education with industry. Variable credit arranged with the advisor. P/F grading option is required and maximum credit per semester is 3 hrs., maximum for entire program is 6 hrs.

203 Matrix Algebra (Lect 3.0) Matrix algebra is introduced by means of systems of linear algebraic equations. Gaussian elimination, least squares solutions, orthogonalization, determinants, eigenvalues and an introduction to vector spaces are discussed. Credit will not be given for both Math 203 and 208. Prerequisite: Math 22.

204 Elementary Differential Equations (Lect 3.0) First order differential equations and linear differential equations of higher order are studied. The Laplace transform and systems of linear equations as well as selected physical applications are covered. Credit will not be given for both Math 229 and Math 204. Prerequisite: Math 22.

208 Linear Algebra I (Lect 3.0) Systems of linear equations, matrices, vector spaces, inner products, linear transformations, determinants, and eigenvalues are studied. Prerequisite: Math 21 or 22.

209 Foundations of Mathematics (Lect 3.0) An introduction to mathematical reasoning through an axiomatic development of mathematical systems. A strong emphasis is placed on getting the student to understand what constitutes a sound mathematical argument. Prerequisite: Math 22 or 21.

221 Teaching Math in Elementary and Middle Schools (Lect 3.0) The course presents an overview of how children learn mathematics, various techniques in teaching mathematics, and examples of applying these techniques to specific mathematical concepts (such as geometry, measurement, basic operations, statistics and probability, etc.). Prerequisite: Educ 40 or Math 2 or 4. (Co-listed with Educ 221) Co-listed with: Educ 222

222 Geometric Concepts for Elementary Teachers (Lect 3.0) The course covers methods of teaching the study of points, lines, polygons, similarity, congruence, constructions, and proof in Euclidean Plane Geometry. Transformational geometry and trigonometry are introduced to elementary teachers. Prerequisite: Educ 40 or Math 2 or 4. (Co-listed with Educ 222) Co-listed with: Educ 222

229 Elementary Differential Equations and Matrix Algebra (Lect 3.0) This course is a combination of selected topics from Math 203 and 204. Solutions of linear differential equations and systems of linear algebraic equations are emphasized. Credit will not be given for both 204 and 229. Prerequisite: Math 22.

300 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Intermediate Differential Equations (Lect 3.0) Linear differential equations, vector-matrix systems, existence and uniqueness theory, nonlinear systems, phase-plane analysis, introduction to stability theory. Prerequisite: Math 204 or Math 229.

303 Mathematical Modeling (Lect 3.0) Model construction and the modeling process, model fitting, models requiring optimization, empirical model construction, modeling dynamic behavior. Individual and team projects. Prerequisites: Math 204 or 229, programming competency.

305 Modern Algebra I (Lect 3.0) The abstract concepts of a group and a ring are introduced. Permutation groups, subgroups, homomorphisms, ideals, ring homomorphisms and polynomial rings are studied. Prerequisite: Math 209.

306 Modern Algebra II (Lect 3.0) This course is a continuation of Math 305. Rings and fields are discussed. Euclidean domains, principal ideal
domains, unique factorization domains, vector spaces, finite fields and field extensions are studied. Prerequisite: Math 305.

307 Combinatorics and Graph Theory (Lect 3.0) Covers some basics of enumeration and graph theory. Topics are selected from the following: permutations combinations, the inclusion/exclusion principle, generating functions, recurrence relations, trees, networks, graph connectivity and graph coloring. Prerequisite: Cmp Sc 158 or Math 209.

308 Linear Algebra II (Lect 3.0) Eigenvalue problems, Cayley-Hamilton theorem, Jordan normal form, linear functionals, bilinear forms, quadratic forms, orthogonal and unitary transformations, selected applications of linear algebra. Prerequisite: Math 208.

309 Advanced Calculus I (Lect 3.0) Completeness of the set of real numbers, sequences and series of real numbers, limits, continuity and differentiability, uniform convergence, Taylor series, Heine-Borel theorem, Riemann integral, fundamental theorem of calculus, Cauchy-Riemann integral. Prerequisite: Math 209 or a 300-level mathematics course or graduate standing.

311 Advanced Calculus II (Lect 3.0) Euclidean n-space, differentiation and integration of scalar functions of several variables, maxima and minima theory, change of variables, differentiation and integration of vector functions of several variables, Divergence theorem, Stokes' theorem. Prerequisite: Math 309.

312 Introduction to Differential Geometry (Lect 3.0) Elements of the geometry of curves and surfaces in Euclidean three-space using methods of advanced calculus and vectors. Prerequisite: Math 309 or Math 322.

315 Introduction to Real Analysis (Lect 3.0) Riemann-Stieltjes integration, sequences and series of functions, uniform approximation, the Banach Space C(a,b), Lebesgue measure and integration, the space LP(a,b), Fourier series. Prerequisite: Math 309.

322 Vector and Tensor Analysis (Lect 3.0) Vector algebra, vector differential and integral calculus, line and surface integrals, theorems of Stokes and Gauss, tensor algebra and tensor analysis, applications to problems in kinematics, elasticity theory, fluid mechanics, electromagnetic theory, relativity theory. Prerequisite: Math 22.

325 Partial Differential Equations (Lect 3.0) Linear equations, heat equation, eigenfunction expansions, Green's formula, inhomogeneous problems, Fourier series, wave equation. Prerequisite: Math 204.

330 Topics in Geometry (Lect 3.0) A survey of non-Euclidean geometries, finite geometries, affine and projective planes, metric postulates for the Euclidean plane, and selected topics. Prerequisite: Math 208.

340 Mathematical Analysis for Secondary Teachers (Lect 3.0) Designed to help teachers gain a deeper understanding of the fundamental idea in analysis, that of a limit. A discovery method is used which includes both individual and group work. Students will present their results in written and oral format. Prerequisite: Math 22 or equivalent.

341 Mathematical Analysis for Secondary Teachers Practicum (Lect 1.0) An instruction- al unit based on the discovery method used in Math 340 will be designed by each student. These units will be class tested. The unit and results of class testing will be presented both in written and oral format. Prerequisite: Math 340.

351 Introduction to Complex Variables (Lect 3.0) The basic tools of complex variables are studied. These include the Cauchy-Riemann equations, complex contour integration, the Cauchy-Goursat theorem, conformal mappings, the calculus of residues and applications to boundary value problems. Prerequisite: Math 204.

355 Engineering Mathematics I (Lect 3.0) Topics in vector analysis, matrices, and determinants, Laplace transform, complex variables. Prerequisite: Math 204.

358 Engineering Mathematics II (Lect 3.0) Infinite series, Fourier series, partial differential equations. Boundary value problems, the Fourier Integral, Bessel and Legendre functions. Prerequisite: Math 204.

361 Problem Solving in Pure Mathematics (Lect 1.0) Problems from pure mathematics, including analysis, algebra, number theory, set theory, finite mathematics, probability and statistics. Emphasis on identifying or inventing ways to solve problems based on the student's entire mathematics background. Prerequisites: Corequisite Math 309 and Senior standing.

371 Problem Solving in Applied Mathematics (Lect 1.0) Problems from applied mathematics which are open-ended, and do not always have a unique correct solution. Emphasis on developing mathematical models and writing solution narratives, including clarity, analysis, and design. Prerequisites: Math 209 and Senior standing.

381 Great Theorems in Mathematics (Lect 1.0) A study of some of the great theorems which have shaped the development of mathematics and human civilization. History, the changing nature of mathematics, and the mathematical content of the theorems themselves, will all be addressed. Sources as close to the originals as possible will be used. Prerequisites: Math 209 and Senior standing.

383 Operational Calculus (Lect 3.0) The Laplace transformation, properties of the transformation, various applications to ordinary and partial differential equations, systems with step and Dirac functions as driving forces, various non-elementary functions and their transforms, problems in heat conduction and wave motion, Fourier transforms and their operational properties. Prerequisite: Math 204.
385 Introduction to Topology (Lect 3.0) Metric spaces; general topological spaces; connectedness, compactness, separation properties, functions and continuity. Prerequisite: Math 309.

390 Undergraduate Research (Variable) This course is designed for the undergraduate student who wishes to engage in research. It is not to be used for graduate credit nor for more than six credit hours of undergraduate credit. The subject and credit are to be arranged with the instructor. Prerequisite: Consent of instructor.

Military Science
Army ROTC

The Department of Military Science is responsible for the Army Reserve Officers' Training Corps, Army ROTC. is a program of leadership and basic military skill training which prepares students to serve as officers in the Total Army—the Active Army, the Army Reserve, and the Army National Guard—after graduation. Army ROTC can help you succeed during college as well as after graduation. You can gain the confidence and self-discipline needed to meet the academic challenge of UMR through military science courses and can acquire the leadership skills, which will impress employers when you enter the work force.

The Army ROTC program is flexible, and allows students to participate in the first two years of the program without obligation. Alternate entry programs for students with prior military service, transfer students, and students serving in the Army Reserve or National Guard are available. The Advanced Course, Junior and Senior years), focuses on preparing cadets for officership, and requires a commitment to the ROTC program. Students who wish to take Military Science courses, but who do not wish to participate in Army ROTC, may do so with the approval of the Department Chairman.

Military Science classes are taught on the UMR campus, and are supplemented by one weekend field training exercise at Fort Leonard Wood, MO. each semester for ROTC cadets. The ROTC program concentrates on the whole person and includes physical training, leadership development, marksmanship, individual tactical skills, and essential knowledge of today's Army and its role in our society.

The minor in military science gives formal academic recognition for the leadership and management training received by those completing the Army ROTC program.

The Military Science program at UMR is described in detail in the Appendix/Army ROTC (Military Science) of this catalog. For more information on the Military Science Program, scholarships, qualification and obligations, and extracurricular activities, contact the Department in 301 Harris Hall or phone 341-4744.

Faculty

Professor:
Lt. Col Randy L. Glaeser, (Department Chair), M.S., UMR

Assistant Professors:
Eric A. Goser, M.S., UMR
Scott A. Werkmeister, B.S., South Dakota State University

Military Science Minor Curriculum

Required courses:
- Mil Sc 105 Small Unit Tactics & Leadership
- Mil Sc 106 Advanced Tactics
- Mil Sc 207 Leadership, Mgt, and Ethics
- Mil Sc 208 Transition to Lieutenant

Elective courses:
- History (select one course)
- History 280 The American Military Experience
- History 329 Contemporary Europe
- History 348 Recent United States History

Human Behavior (select one course)
- Psychology 050 General Psychology
- Philosophy 015 Introduction to Logic
- Philosophy 025 Ethics of Engineering Practice
- Sociology 081 General Sociology

Military Science Courses

010 Ranger Operations (Lect 1.0) Learn about one of the world’s most elite fighting forces -the U. S. Army Rangers. Get some hands-on training with actual army equipment. Learn rappelling, land navigation, orienteering and combat patrolling.

020 Military Marksmanship (Lect 1.0) Fundamentals of military marksmanship. Includes firing the .22 caliber rifle and pistol as well as other army weapons.

030 Wilderness Survival and Life-Saving Techniques (Lect 1.0) Basic life-saving techniques that will enable the student to assist an injured person or himself in an emergency, and survival techniques that will help the student survive in the wilderness.

040 Introduction to Military Leadership (Lect 1.0) The culmination of the military science basic course. It is designed to investigate career options, prepare students for the opportunity to progress into the advanced military courses and pursue a commission as a Second Lieutenant.

050 Army Physical Readiness Program (Lab 1.0) Course instruction includes planning, implementing and managing the Army physical fitness program; the conducting of an Army physical fitness test; physical fitness training to include conditioning, calisthenics, and cross-country running. Fundamentals of drills and ceremony will also be taught.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course.

102 Basic Leadership Laboratory (Lab 1.0) Hands-on experience in basic military leadership skills, supplementing, but not duplicating classroom instruction in MSI and MSII courses. Training is conducted at squad (8 person group) level with emphasis on leadership development at that level. Topics include oral communication and presentations, decision making, drill and cere-
monies, squad tactics, land nav, and the tactical bivouac. Prerequisite: To accompany Mil Sc 40.

105 Small Unit Tactics & Leadership (Lect 2.5 and Lab 0.5) Applied military leadership and management, branches of the Army, methods of instruction; tactical platoon operations; physical fitness training; development of leadership abilities through practical exercises.

106 Advanced Tactics (Lect 2.5 and Lab 0.5) Applied military leadership and management, including small unit tactical operations of companies; counseling soldiers; advanced camp orientation; military customs and ceremonies; physical fitness training; leadership abilities development through practical exercises.

200 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required. Prerequisites: Mil Sc 107 and 108.

207 Leadership, Management, and Ethics (Lect 2.5 and Lab 0.5) Transition from college student to mid-level manager; staff organization, functions and business practices; counseling methods, techniques and responsibilities; leadership responsibilities which enhance a diverse cultural and ethical command climate which meets moral obligations and provides oversight into subordinates personal needs. Prerequisites: Mil Sc 105 and 106.

208 Transition to Lieutenant (Lect 2.5 and Lab 0.5) Transition from college student/cadet to army officer (2nd Lieutenant); legal aspects of decision making and leadership; organization of the army and organization for operations from the tactical to strategic levels; administrative and logistical management, reporting to first duty station and change of station entitlements; platoon leader actions and experiences. Prerequisite: Mil Sc 207.

Music

At UMR, music offerings include bands, orchestras, choirs, and the Collegium Musicum. Credit may be earned by participating in these groups.

You can taken courses in various areas of music appreciation, music history and theory, special projects courses in music, and private applied music instruction.

The music minor is available and you may elect this as a broadening aspect to your education.

Faculty

Professor:
David Oakley (Emeritus), D.M.E., Indiana

Assistant Professor:
Joel Kramme, M.A., Iowa

Lecturer:
Lorie Francis, M.M., Colorado
Donald Miller, M.M.E., Wichita State

Music Minor Curriculum

1) The following courses will be taken:
A) Eight hours of theory.
B) Six hours of music history and literature.
C) Six hours of applied private instruction (two years), culminating in an approved recital or other appearance.

2) The successful music minor will demonstrate adequate keyboard proficiency or take keyboard until proficiency is attained.

3) The music minor will participate in one or more major ensembles per semester (band, jazz, orchestra, vocal, opera).

Music Courses

011 Individual Music Instruction I (Variable) Individual music instruction in student’s concentration area. Consent of instructor required.

021 Individual Music Instruction II (Variable) Individual music instruction in student’s concentration area. Prerequisite: Consent of instructor.

030 University Band (Lab 1.0) Open to all students who play a band instrument. This ensemble is both the “Miner” Marching Band and the UMR Symphonic Band. Students assigned to the ensemble after satisfactory audition.

031 Varsity Band (Lab 1.0) A pops band for performance at basketball games and other campus functions; each semester. A skills course not a humanities elective. Consent of director.

032 University Orchestra (Lab 1.0) Open to all students who play stringed, wind, percussion or keyboard instruments used in the symphony orchestra. Students assigned to the orchestra after satisfactory audition.

033 Highland Pipe Band (Lab 1.0) A musical unit of bagpipes and drums for performance at campus, military, and other functions. An elective not to satisfy humanities elective. Consent of instructor required.

034 Instrumental Chamber Ensemble-Strings (Lab 1.0) Open to all students who play violin, viola, cello or double bass. Students assigned to the ensemble after satisfactory audition.

035 Wind and Percussion Ensemble (Lab 1.0) Open to all students who play wind or percussion instruments.

036 Jazz Ensemble (Lab 1.0) A study of the various instrumental jazz forms. Students are assigned by audition to a jazz ensemble.

038 Class Instrument Instruction (Lab 0.5) Class instruction for students who play an instrument and wish to learn a secondary instrument or for students with no instrumental experience who wish to learn to play an instrument for self-betterment.

040 University Choir (Lab 1.0) Open to any student of the university. Students assigned after satisfactory audition.

041 Chamber Vocal Ensembles (Lab 1.0) The members are selected by audition and organized
into interest groups-madrigal, pops ensemble, and chamber choir.

042 **Collegium Musicum - King’s Musicke** (Lab 1.0) Study and performance of renaissance and early Baroque instrumental music using historical reproductions of period instruments and appropriate performance techniques. Performances on and off campus each semester. A skills course, not a humanities elective. Prerequisite: Consent of instructor and audition.

043 **Collegium Musicum - Madrigal Singers** (Lab 1.0) Study and performance of renaissance and early Baroque vocal music using performance techniques appropriate to the period. Performances on and off campus each semester. A skills course, not a humanities elective. Prerequisite: Consent of instructor and audition.

050 **Music Understanding and Appreciation** (Lect 3.0) A study of the development of music with emphasis on understanding music forms and the role music has played in the various historical periods.

061 **Fundamentals of Music** (Lect 2.0) A study of basic concepts in music, including pitch, notation, beat, scales, intervals, and chords.

100 **Special Problems** (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

101 **Special Topics** (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

111 **Individual Music Instruction III** (Variable) Individual music instruction in student’s concentration area. Prerequisite: Consent of instructor.

121 **Individual Music Instruction IV** (Variable) Individual music instruction in student’s concentration area. Prerequisite: Consent of instructor.

152 **Survey of Contemporary Music** (Lect 3.0) A study of the various musical developments in the 20th century, including electronic music. Includes in-depth analysis of form in music. Prerequisite: Music 50.

155 **Music in the United States** (Lect 3.0) A study of the development of music in the United States from Colonial times to the present. Includes in-depth analysis of form in music. Prerequisite: Music 50.

161 **Theory of Music I** (Lect 3.0 and Lab 1.0) Basic musicianship. Notation, rhythm, meter, scales, intervals, triads, nonharmonic tones, major-minor seventh, modulations of common practice period. Strong emphasis on aural perception, sight-singing, and key-board performance of these materials. Applications of these materials in original composition and analysis of melodies and elementary homophonic form.

162 **Theory of Music II** (Lect 3.0 and Lab 1.0) A continuation of the requisite theory and fundamentals of music I. Prerequisite: Music 161.

171 **Introduction to Electronic Music** (Lect 3.0) An introduction to the techniques, repertoire, history and literature of music technology and electronic music. Prerequisite: Music 161.

200 **Special Problems** (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 **Special Topics** (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

210 **Seminar** (Variable) Discussion of current topics.

251 **History and Analysis of Music I** (Lect 3.0) General survey of history of music from Greek period to 18th century. Score reading required. Prerequisite: Music 162.

252 **History and Analysis of Music II** (Lect 3.0) General survey of history of music from the 18th century to the present. Score reading required. Prerequisite: Music 251.

255 **Music for the Elementary Teacher** (Lect 3.0) Pragmatic approaches in the development of concepts, knowledge and skills essential for music instruction within the elementary school curriculum. Offered on demand. Prerequisite: Instructor consent.

300 **Special Problems** (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 **Special Topics** (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

Philosophy

Bachelor of Arts

The study of philosophy emphasizes the understanding of ideas, the capacity to identify assumptions, and the ability to gain insights into problems and puzzles. Central to philosophy is the application of rigorous thinking to the fundamental issues of reality, knowledge, and value.

Because rigorous thinking is not restricted to any one academic area, philosophical interests are wide ranging. All types of questions are considered: do we have freewill or are all our actions caused? Does God exist and have a determinable nature? How do we tell the difference between what’s morally right and wrong? What is thinking and can animals or machines think? How does our nature influence our behavior and creative activity? What is the interrelationship between technological development and human values? etc.

Philosophy touches on nearly all fields of endeavor and a philosophical education is very flexible. With the help of advisors, students can design their curriculum to match their own special interests. Philosophy is also an excellent pre-professional degree.

Faculty

Professors:
Wayne Cogell (Emeritus), Ph.D., University of Missouri-Columbia
Richard Miller (Department Chair), Ph.D., Illinois
Robert Oakes (Emeritus), Ph.D., Pennsylvania
Bachelor of Arts
Philosophy Courses

005 Introduction to Philosophy (Lect 3.0) An historical survey of the major approaches to philosophical problems, especially those of the nature of reality, human nature, and conduct. Prerequisite: Entrance requirements.

010 Practical Reasoning (Lect 3.0) An introduction to the study of non-formal reasoning. The course examines the subtle ways that the form in which information is presented can color the way that information is understood. Prerequisite: Entrance requirements.

015 Introduction to Logic (Lect 3.0) A study of the basic rules of both formal and symbolic logic, including types of argumentation, methods of reasoning, valid reasoning, inductive and deductive reasoning as used in the sciences and in communication in general. Prerequisite: Entrance requirements.

025 Ethics of Engineering Practice (Lect 3.0) Engineering ethics, examines major ethical issues facing engineers in the practice of their profession: the problem of professionalism and a code of ethics; the process of ethical decision-making in different working environments; the rights, duties, and conflicting responsibilities of engineers.

035 Business Ethics (Lect 3.0) Develop ethical concepts relevant to deciding the moral issues that arise in business. Topics include: Economic systems, government regulations, relations to external groups and environment, advertising, product safety and liability, worker safety and rights, rights and responsibilities of business professionals. Prerequisite: Entrance requirements.

075 Comparative Religious Philosophy (Lect 3.0) A comparison of the philosophical ideas and foundations of the major Eastern and Western religions. Prerequisite: Entrance requirements.

100 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

200 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

204 History of Philosophy I (Lect 3.0) A study of selected philosophical works from the pre-Socratics to William of Occam. Prerequisite: An introductory (below 100) level Philosophy course.

205 History of Philosophy II (Lect 3.0) A study of selected philosophical works from Descartes to Hegel to Kant emphasizing the problems of knowledge and reality. Prerequisite: An introductory (below 100) level Philosophy course.

212 Ethics of Computer Usage (Lect 3.0) After providing a brief background in ethical theory, this course will focus on five areas where use of computers has posed significant ethical questions: professional ethics, liability for malfunctions in computer programs, privacy, power, and ownership of computer programs. Prerequisite: Any introductory (below 100) level philosophy course.

300 Special Problems (Variable) Problems or readings on specific subjects of projects in the department. Consent of instructor required.

301 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Internship-Philosophy (Variable) Internship will involve students applying critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student's background and the setting. Prerequisites: Any introductory (below 100) level philosophy course.

305 Contemporary Philosophy (Lect 3.0) An examination of major philosophic movements of the 20th century such as Realism, Pragmatism, Logical Positivism, and Existentialism.
320 Minds and Machines (Lect 3.0) The course will be centered on the topic of artificial intelligence and the problems raised by contemporary attempts to simulate human thinking and perception in machines. Special emphasis will be placed on recent developments in psychology, physiology, cybernetics and computer technology. Prerequisite: Any introductory (below 100) level philosophy course.

325 Philosophical Ideas in Literature (Lect 3.0) A systematic study of philosophical problems which appear in literature, with illustrations from selected literary works. Prerequisite: Any introductory (below 100) level philosophy course.

330 Philosophy of Art: Aesthetics (Lect 3.0) An examination of various theories of aesthetic value and the status of aesthetic judgments. Prerequisite: Any introductory (below 100) level philosophy course.

333 American Philosophy (Lect 3.0) A study of American philosophical development with emphasis upon the "Classical Age of American Philosophy", i.e., Pierce, James, Dewey, Royce, Santayana and Whitehead. Prerequisite: Any introductory (below 100) level philosophy course.

335 Philosophy of Religion (Lect 3.0) A consideration of the major presuppositions of western theism, such as the existence of god and the cognitive meaningfulness of religious language. Prerequisite: Any introductory (below 100) level philosophy course.

337 Existentialism (Lect 3.0) A study of the origin, nature and implications of modern existentialism; selections from major existentialists are read. Prerequisite: Any introductory (below 100) level philosophy course.

340 Social Ethics (Lect 3.0) Discussion of ethical issues confronting society and the arguments offered for alternative laws and public policies. Topics might include: freedom of speech/action, government regulation, welfare, capital punishment, euthanasia, abortion, the environment, affirmative action, just wars, foreign aid, world hunger. Prerequisite: Any lower level ethics course.

345 Philosophy of Science (Lect 3.0) An examination of the fundamental methods and assumptions of the sciences, with emphasis on scientific reasoning and theories. Prerequisite: Any introductory (below 100) level philosophy course.

347 Philosophy of Language (Lect 3.0) A study of the contemporary philosophical school of linguistic analysis. Topics will include theories of meaning, reference, the analysis of linguistic acts, the relation of language to thought and the world, the thesis of linguistic relativity (Whorf hypothesis), current theories in psycholinguistics. Prerequisite: Any introductory (below 100) level philosophy course.

350 Environmental Ethics (Lect 3.0) Study of the complex moral issues concerning our relationship to the environment and the ethical foundations of our environmental responsibilities. Discussion topics include: conservation, preservation, resource development, pollution, toxic substances, future generations, endangered species, regulation, zoning, takings, etc. Prerequisite: Any introductory (below 100) level philosophy course.

355 Symbolic Logic (Lect 3.0) A study of modern logic theory and methods. Either semester. Prerequisite: Phil 15.

360 Foundations of Political Conflict (Lect 3.0) This course is designed as a survey of the philosophical foundation of major political systems. For example, communism, fascism, democracy. Materials will be drawn from relevant historical and/or contemporary sources. Prerequisite: Any introductory (below 100) level Philosophy course.

399 Topics in Philosophy (Lect 3.0) An intensive course designed for students with a special interest in philosophy. The content of the course may vary and the course may be repeated for additional credit. Prerequisite: An introductory (below 100) level Philosophy course.

Physical Education and Recreation

To enhance your academic education, you can take part in physical education and recreation courses on campus. There are courses in aerobics, aquatics, fitness, golf, racquetball, swimming fitness, tennis, methods in elementary physical education, weight training, theory of coaching basketball and football, care and prevention of athletic injuries, elements of health education, and theory of sports officiating. The goal of the department is to provide recreational experiences and course work, which will contribute to your physical health and development, social adjustment, and emotional well being. The emphasis is on training you to gain the maximum benefit from leisure time both now and in the future.

The Multi-Purpose building and surrounding facilities provides an ideal place for you to participate in recreational activities. The building features an indoor swimming pool, indoor jogging track, basketball, volleyball, and badminton courts, weight rooms, aerobics/martial arts room, racquetball courts and a squash court. A golf course, tennis courts, and multi-use intramural fields highlight the outdoor facilities.

Faculty

Professors:
Dewey Allgood (Emeritus), M.A., Colorado State
Billy Key (Emeritus), M.S., Washington University

Assistant Professors:
Charles Finley (Emeritus), M.S., University of Missouri-Columbia
Instructors:
Travis Boulware, M.S., Tennessee Tech University
Kirby Cannon, M.S., Iowa State
Shawn Corbett, B.S.E., Southeast Missouri
Dawson Driscoll, M.S., Ithaca College
L. Douglas Grooms, B.S.E., Northeast Missouri
Jason Jaques, B.S.E., University of California-Davis
Anita Keck, B.A., University of Missouri-Rolla
Jason Koltz, B.A., Northeast Missouri
Ray Leuellen, M.Ed., University of Missouri-Columbia
Marc Lowe, B.S., Missouri Valley
Dale Martin, M.S., Central Missouri
Mark Mullin (Athletic Director), M.S., Northeast Missouri
Joe Pfankuch, B.S., Northern Michigan
Sarah Preston (Department Chair), M.S., University of Tennessee

Physical Education Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Special Problems (Variable)</td>
<td>Problems of readings on specific subjects or projects in the department. Consent of instructor required.</td>
</tr>
<tr>
<td>101</td>
<td>Special Topics (Variable)</td>
<td>This course is designed to give the department an opportunity to test a new course. Variable title.</td>
</tr>
<tr>
<td>102</td>
<td>Fundamentals of Golf (Lab 1.0)</td>
<td>To give the student the theory and practical application of the golf swing while at the same time developing increasing skills, and an interest in the history, rules, and etiquette of the game of golf.</td>
</tr>
<tr>
<td>103</td>
<td>Fundamentals of Tennis (Lab 1.0)</td>
<td>Lectures, demonstration, and supervised practice are designed to acquaint the student participants with theory and execution which govern the playing of sound and effective tennis.</td>
</tr>
<tr>
<td>104</td>
<td>Beginning Aquatics (Lab 1.0)</td>
<td>The course will provide the student with basic swimming, diving, and elementary life saving skills to prepare the student for additional work in the field of aquatics.</td>
</tr>
<tr>
<td>105</td>
<td>Aerobics (Lab 1.0)</td>
<td>The course intent is to improve the physical condition of the student through various mediums of exercise aimed at demanding more oxygen over an extended period of time to increase the efficiency of the cardiovascular system and improve muscle tone.</td>
</tr>
<tr>
<td>108</td>
<td>Beginning Racquetball (Lab 1.0)</td>
<td>Course instruction familiarizes the student with the rules, playing strategy, and court etiquette of racquetball. Actual playing experience allows the opportunity for skill development in this leisure activity.</td>
</tr>
<tr>
<td>109</td>
<td>Basketball/Volleyball (Lab 1.0)</td>
<td>The Basketball/Volleyball course will contribute to the mastery of fundamental skills in two of the world’s leading participation sports. History, rules and strategy will be emphasized.</td>
</tr>
<tr>
<td>110</td>
<td>Weight Training (Lab 1.0)</td>
<td>Course instruction emphasizes the cognitive aspects of weight lifting, covering such topics as motivation, common injuries, procedures for warm-up and cool down, and safety procedures.</td>
</tr>
<tr>
<td>111</td>
<td>Swimming Fitness (Lab 1.0)</td>
<td>The Swimming Fitness course will provide an environment which will be conducive for the student to improve physical skills and conditioning through training in the water. Benefits of exercise, training principles and safety precautions will be emphasized.</td>
</tr>
</tbody>
</table>

112 **Fundamentals and Theory of Coaching Basketball** (Lect 2.0) To make the student aware of skills, fundamentals, court situations, strategy, and administrative procedures for successful basketball coaching.

113 **Fundamentals and Theory of Coaching Football** (Lect 2.0) To present materials that will provide the student with a working knowledge of coaching, administration, and appreciation of football.

150 **Administration of Interscholastic Athletics** (Lect 3.0) To present materials that will provide the student with a working knowledge of the major administration and day to day problems that are associated with interscholastic athletics.

151 **Care and Prevention of Athletic Injuries** (Lect 3.0) Technique, principles, and theory underlying the prevention and care of athletic injuries.

152 **Elements of Health Education** (Lect 2.0) This course surveys various health topics and attempts to provide some answers related to them. Presents pertinent scientific and medical facts of current health concepts and their relation to the principles and theories of health education.

153 **Fundamentals and Theory of Sports Officiating** (Lect 2.0) To prepare students with knowledge and skills so that they may both officiate competently and adequately critique officiating by others.

200 **Special Problems** (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 **Special Topics** (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

230 **Methods in Physical Education K-4** (Lect 3.0) The course will provide the opportunity to learn how to promote student fitness and skill development while building the foundation for a physically active life through specific activities aimed at the younger child. (Co-listed with Educ 230) Co-listed with: Educ 230

231 **Methods in Physical Education 5-9** (Lect 3.0) The course will provide the opportunity to learn how to promote student fitness and skill development while building the foundation for a physically active life through specific activities aimed at the student in transition from childhood to young adulthood (5-9). (Co-listed with Educ 231) Co-listed with: Educ 231
Physics

Bachelor of Science
Master of Science
Master of Science for Teachers
Doctor of Philosophy

Physics is devoted to the discovery and exploration of the most basic physical laws governing our material universe. The working physicist attempts to express these laws in their most elegant mathematical form, so that they can be applied to predict the behavior of all forms of matter and energy, in physical systems that range from the subatomic level of quarks, gluons, nucleons, and atoms, all the way up to the astrophysical level of planets, stars, black holes, galaxies, and larger scale structures of the universe. The knowledge obtained in various experimental and theoretical investigations of physical phenomena forms the foundation for many modern technologies. From the lasers used in high-speed communications and micro-surgery, to the plastic electronics used in modern computer displays, the magnetic behavior of the thin films used for computer hard drives, and the radiation detectors and optical elements used in the Hubble space telescope, the fundamental knowledge gained by physicists helps to shape and improve the quality of modern life.

The UMR physics department is dedicated to providing opportunities for undergraduates to participate in cutting-edge, nationally funded scientific programs supervised by departmental faculty. Topics currently being investigated by UMR undergraduates include collisions between electrons, atoms, and ions; the magnetic properties of nanoscale thin films and other highly magnetic materials; exotic interactions in atoms and molecules excited with ultrafast lasers; electrically generated luminescence in polymers; and atmospheric changes induced by manmade pollutants, such as those found in acid rain or in the exhaust generated by high altitude aircraft and space vehicle launches.

The department encourages its undergraduates to get involved in the many research projects available, and many students who participate in research go on to present their work at research competitions throughout the state and at national scientific meetings. UMR physics students regularly win prizes for their research accomplishments in the annual Fuller and Missouri Academy of Science competitions.

After receiving a solid foundation in the basic physics governing the behavior of matter, energy, and radiation, the undergraduate physics major is able to choose among many advanced level courses to satisfy their particular interests in various fields of modern physics. Courses available to upper level physics majors include advanced electricity and magnetism, classical and modern optics, astrophysics, physical mechanics, cloud and aerosol physics, quantum mechanics, general relativity, thermal physics, solid state physics, laser physics. The curriculum also includes advanced laboratory courses where students design and participate in original research with other enthusiastic physics majors. Many additional technical courses are available to physics majors in applied areas of other disciplines, such as computer science, electrical engineering, and the biological sciences.

Your undergraduate program will cover a range of fundamental topics and will include substantial laboratory training. In addition, the program is designed with many electives that allow physics majors to tailor their undergraduate education to their own particular interests. As a physics major you will have the flexibility to develop a program that best suits your interest and needs. With 48 credit hours in physics, 23 in mathematics, 11 in chemistry, and 3 in computer science, the rest of the 130 required hours are in electives that you select in consultation with your advisor.

Many physics majors choose to use their electives to study other technical areas, such as mathematics, computer science, or electrical engineering. Some students get dual bachelor’s degrees, for example, with their second degree in computer science, chemistry, or mathematics. Because there is considerable overlap in degree requirements between physics and other technical and scientific disciplines, a dual degree usually requires no more than one extra semester of undergraduate study. The best curriculum for each student seeking a dual degree is determined in planning sessions with his or her advisor.

An undergraduate degree in physics provides opportunities for a wide range of careers. Over two-thirds of our graduates go on to graduate school, many at some of the most prestigious first-tier schools in the country. Those who complete their physics education with a bachelor’s degree have been very successful in finding exciting employment opportunities in today’s high-tech industries. UMR physics graduates have gone on to lead and manage major research efforts at leading industrial companies, to be professors and chairmen at leading academic universities, and to work in areas ranging from law and medicine to ecophysics and astrophysics.

All interested or prospective students considering a career in physics are invited to visit the campus and tour our research laboratories and classrooms to obtain a better picture of the exciting opportunities available.

Faculty

Professors:
Ralph Alexander, Jr., Ph.D., Cornell
Robert Dubois, Ph.D., Nebraska
Don Hagen, Ph.D., Purdue
Barbara Hale, Ph.D., Purdue
Don Madison (Curators’), Ph.D., Florida State
Ronald Olson (Curators’), Ph.D., Purdue
Paul Parris (Department Chair), Ph.D., Rochester
Jerry Peacher, Ph.D., Indiana
Allan Pringle, Ph.D., University of Missouri-Columbia
Michael Schulz, Ph.D., Heidelberg
Gerald Wilemski, Ph.D., Yale

Associate Professors:
Ronald Bieniek, Ph.D., Harvard
John Schmitt, Ph.D., Michigan
Greg Story, Ph.D., Southern California
Dan Waddill, Ph.D., Indiana

Assistant Professor:
Massimo Bertino, Ph.D., Göttingen
Carsten Ullrich, Ph.D., Wurzburg
Thomas Vojta, Ph.D., Chemnitz

Adjunct Assistant Professor:
Agnes Vojta, Ph.D., Technische Universitaet Dresden

Emeritus:

Professors:
Ibrahim Adawi (Emeritus), Ph.D., Cornell
Richard Anderson, (Emeritus), Ph.D., Kansas State
Robert Bell (Emeritus), Ph.D., Virginia Polytechnic Institute
John Carstens (Emeritus), Ph.D., University of Missouri-Rolla
Robert Gerson (Emeritus), Ph.D., New York
Edward Hale (Emeritus), Ph.D., Purdue
Otto Hill (Emeritus), Ph.D., Texas
Robert McFarland (Emeritus), Ph.D., Wisconsin
John Park (Emeritus), Ph.D., Nebraska
Don Sparlin (Emeritus), Ph.D., Northwestern

Associate Professors:
Charles McFarland (Emeritus), Ph.D., Washington University
William Parks (Emeritus), Ph.D., Iowa
Jack Rivers (Emeritus), Ph.D., Cincinnati

Bachelor of Science

Physics

FRESHMAN YEAR

First Semester
Chem 1-General Chemistry 1
Chem 2-General Chemistry 2
Chem 4-Intro to Lab Safety & Hazardous Materials 3
English 20-Exposition & Argumentation 4
Math 8-Calculus w/Analytic Geometry I 5
Physics 1-Intro to Physics 6

Second Semester
Chem 3-General Chemistry 7
Elective 8
History (112, 175, 176) or Pol Sc 90 9
Math 21-Calculus w/Analytic Geometry II 10
Physics 21-General Physics I 11
Physics 22 or 27-General Physics Lab 12

SOPHOMORE YEAR

First Semester
English 60-Writing & Research 13
Math 22-Calculus w/Analytic Geometry III 14
Physics 25-General Physics II 15
Physics 26 or 28-General Physics Lab 16
Cmp Sc 73 & 77 or 74 & 78 or 53 17
Elective 3 18

Second Semester
Math 204-Elementary Differential Equations 19
Physics 207-Modern Physics I 20
Physics 212-Intermediate Physics Lab 21
Physics 208-Intro to Theoretical Physics 22
Elective 1 23

JUNIOR YEAR

First Semester
Physics 308-Physical Mechanics 24
Physics 322-Advanced Physics Lab I 25
Physics 307-Modern Physics II 26
Math/Stat Elective 2 27
Electives 2 28

Second Semester
Physics 221-Electricity & Magnetism I 29
Physics 332-Advanced Physics Lab II 30
Physics Elective 3 31
Electives 2 32

SENIOR YEAR

First Semester
Physics 311-Thermal Physics 33
Math/Stat Elective 2 34
Physics 307-Modern Physics II 35
Physics 322-Advanced Physics Lab I 36
Electives 2 37

Second Semester
Physics 311-Thermal Physics 38
Elective-Humanities (300 level) 39
Physics Elective 40
Electives 2 41

NOTE: The minimum credit hours required for a Bachelor of Science in Physics is 130 hours. No more than two of the required physics and mathematics courses with a grade of “D” may be used to meet graduation requirements. Upon petition to and approval by the physics faculty, three semester hours of advanced ROTC (Military Science or Aerospace Credit Studies) credit can be counted as elective credit to meet requirements for graduation.

1 Electives, in addition to the Math/Stat electives2 and Physics electives3, shall include six hours of social studies and nine hours of humanities, at least three of which must be literature and at least three of which must be at the 300 level (Phil 345 recommended). Twenty-one hours of free electives may be used to develop an emphasis area. Eighteen hours of elective credit shall be in courses at the junior or senior level.

2 Six hours of mathematics or statistics beyond Math 204 are required. Math 208, 322, 325, or 351 are recommended.

3 In addition to the specific physics courses listed (Physics 307, 308, 311, 321,322,332, and 361) two other physics 300 level courses are required. Physics 305, 323, 337, 357, 371, or 381 are recommended.

Physics Minor Curriculum

The minor in physics is a flexible program whose goal is to increase the breadth and competency of science and engineering students in modern or classical physics. Science students pursuing the physics minor will be interested in a deeper understanding of fundamental physical processes. Engineering students who intend to work in research or advanced development
may use a physics minor to acquire a thorough knowledge of classical and quantum optics or laser processes.

The physics minor consists of Physics 107 or Physics 207 and 12 additional hours of physics courses at the 200 level or above. The program will be designed to conform to the individual's interests and needs.

Physics Courses

001 Introduction to Physics (Lect 1.0) An introduction to the study of physics and its intellectual and professional opportunities. The student will be acquainted with the various areas of physics and with departmental and campus facilities useful to their future studies. Required of all freshman majors.

004 Concepts in Physics (Lect 3.0) A non-mathematical description of the evolution and current status of the basic laws of physics, intended for non-science majors. Mechanics, relativity, thermodynamics, electromagnetics, and quantum physics are studied.

005 Concepts in Physics Laboratory (Lab 1.0) A series of elementary experiments, five required, sixth optional, will be used to illustrate such basic concepts of physics as conservation of energy and momentum, interference of light, atomic spectra, etc. Prerequisite: Preceded or accompanied by Physics 4.

006 Environmental Physics I (Lect 3.0) A course for non-science majors which will consider, without mathematics, the production of energy and the environmental consequences of its use, and the physical problems associated with pollution.

007 Environmental Physics II (Lect 3.0) A companion course to Environmental Physics 1: A non-mathematical course treating problems of the environment: Population, limits to growth, world resources, conventional and alternative energy sources, atmospheric physics, land degradation, air and water pollution and control.

008 Laboratory for Environmental Physics (Lab 1.0) A laboratory course to accompany the Environmental Physics lecture course as an option. A set of experiments will be performed related to environmental impacts studied in Environmental Physics 006. To be taken simultaneously with Environmental Physics 006. Prerequisite: Corequisite: Physics 6.

009 Introductory Astronomy (Lect 3.0) An introductory course in basic astronomy designed primarily for students other than those in science and engineering. Topics include history, the sky, the solar system, stars, stellar evolution, galaxies and the origin and evolution of the universe. Credit will not be given for both Physics 9 and Physics 11.

010 Astronomy Laboratory (Lab 1.0) A science laboratory course in which the student analyzes and interprets astronomical data and makes observations with a telescope. Prerequisite: Preceded or accompanied by Physics 9 or 11.

011 Descriptive Astronomy (Lect 3.0) A fundamental survey course in modern astronomy. Topics include: history, celestial mechanics, the earth and sky, time, the solar system, telescopes, stellar structure and evolution, black holes, neutron stars, the galaxy, galaxies, and the origin and structure of the universe. Credit will not be given for both Physics 9 and Physics 11.

021 General Physics I (Lect 4.0) An introduction to the fundamental ideas of physics, including mechanics, heat, and sound. Prerequisite: Math 8.

022 General Physics Laboratory (Lab 1.0) Experiments related to topics studied in Physics 21. Prerequisite: Preceded or accompanied by Physics 21.

023 Engineering Physics I (Lect 3.0 and Lab 1.0) An introduction to mechanics, with an emphasis on topics needed by engineering students, including kinematics, dynamics, statics, and energetics. Prerequisite: Math 8.

024 Engineering Physics II (Lect 3.0 and Lab 1.0) An introduction to electricity, magnetism, and light, with emphasis on topics needed by engineering students. Prerequisites: Physics 23, Math 21.

025 General Physics II (Lect 4.0) An introduction to the fundamental ideas of physics including electricity, magnetism, and light. Prerequisites: Physics 21, Math 21.

026 General Physics Laboratory (Lab 1.0) Experiments related to topics studied in Physics 25. Prerequisite: Preceded or accompanied by Physics 25.

027 General Physics Laboratory (Lab 1.0) An enriched Physics 22 laboratory offered to superior or students. Prerequisite: Preceded or accompanied by Physics 21 or 23.

028 General Physics Laboratory (Lab 1.0) An enriched Physics 26 laboratory offered to superior or students. Prerequisite: Preceded or accompanied by Physics 24 or 25.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

107 Introduction to Modern Physics (Lect 3.0) An elementary survey of the modern concepts in physics and their applications; relativity, quantum mechanics, atomic physics, solid state physics, nuclear and particle physics. Prerequisites: Math 22 and Physics 24 or 25.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

207 Modern Physics I (Lect 3.0) An introduction to quantum mechanics, atomic physics, and solid state physics. Topics include historically important experiments and interpretations. Prerequisites: Physics 24 or 25, preceded or accompanied by Math 204 or 229.

208 Introduction to Theoretical Physics (Lect 3.0) Fundamental physical concepts are elaborat-
ed in mathematical terms emphasizing the coherence and economy of Physics. Topics include elementary vector analysis, introduction to physical mechanics (motion of a point mass, conservation laws, relativity), Fourier series, and introduction to partial differential equations. Prerequisites: Math 204 co-requisite; Physics 24 or 25.

212 Intermediate Physics Laboratory (Lect 1.0 and Lab 2.0) A laboratory study of the principles of instrumentation used in all modern branches of physics. Analog and digital methods of data gathering are surveyed. Laboratory practice evolves from elementary operations to the design and assembly of a simple instrument.

221 Electricity and Magnetism I (Lect 3.0) A study of electric and magnetic fields, leading to Maxwell’s equations. Topics covered include the electrostatic field, the electric potential, and the electrostatic field in matter. Prerequisite: Physics 208.

236 Basic Weather (Lect 2.0 and Lab 1.0) A course to study basic concepts of atmospheric science such as air masses, frontal weather patterns and weather forecasting. The course also will include topics on climate and severe weather. Prerequisites: Physics 23, Ge Eng 50. (Co-listed with Ge Eng 236) Co-listed with: Ge Eng 236

300 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Physics for Elementary School Teachers (Lect 2.0 and Lab 1.0) A nonmathematical review of the fundamental ideas of physics, including mechanics, matter, energy, sound, electricity, magnetism, astronomy, and light. Emphasis is placed on the development of hands-on activities. (For elementary school teachers or Master of Science for Teachers candidates only.)

305 Astrophysics (Lect 3.0) The structure, physical characteristics and evolution of stars, binary systems, nebulae and galaxies. Prerequisite: Physics 107.

307 Modern Physics II (Lect 3.0) A continuation of Physics 207. An introduction to nuclear and particle physics. Topics include nuclear models, decays, and reactions, and elementary particles and fundamental forces. Prerequisites: Math 204 or 229, and either Physics 107 with consent of instructor or Physics 207.

308 Physical Mechanics (Lect 3.0) This course covers topics of rigid body motion in three dimensions, moving coordinate frames, two body collisions, conservation laws, small oscillations, generalized coordinates, and LaGrange’s and Hamilton’s equations. Prerequisite: Physics 208.

311 Thermal Physics (Lect 3.0) A study of the equilibrium states of matter as governed by the first and second laws of thermodynamics. Emphasis is placed on the microscopic approach with an introduction to statistical mechanics. Topics include the kinetic theory of (uniform) gases, phase equilibria in pure systems, and an introduction to quantum statistics. Prerequisite: Physics 107 or 207.

313 Introduction to General Relativity (Lect 3.0) An introduction to the theory of general relativity. Topics covered include the formalism of general relativity, Einstein’s gravitational field equations, the Schwarzschild solution, black holes, and cosmological models of the universe. Prerequisite: Physics 208.

321 Electricity and Magnetism II (Lect 3.0) A continuation of Physics 221. Topics covered include the magnetostatic field, the magnetic vector potential, the magnetostatic field in matter, electrodynamics, and electromagnetic waves. Prerequisite: Physics 221.

322 Advanced Physics Laboratory I (Lab 3.0) A laboratory study of the principles of basic experiments in all major branches of physics. The experiments stress design of apparatus, and procedures and analysis in projects involving electronic, optical, mechanical, and vacuum techniques. Prerequisite: Physics 212.

323 Classical Optics (Lect 3.0) Physical optics and advanced topics in geometrical optics. Topics include ray propagation, electromagnetic propagation, mirrors, lenses, interference, diffraction, polarization, imaging systems, and guided waves. Prerequisites: Math 22 and Physics 24 or 25. (Co-listed with El Eng 323) Co-listed with: El Eng 323

324 Fourier Optics (Lect 3.0) Applications of Fourier analysis and linear system theory to optics. Topics include scalar diffraction theory, Fourier transforming properties of lenses, optical information processing, and imaging systems. Prerequisites: El Eng 261 & 275 or Physics 208 & 321. (Co-listed with El Eng 324) Co-listed with: El Eng 324

326 Fiber and Integrated Optics (Lect 3.0) Introduction to optical waveguides and their applications to communication and sensing. Topics include dielectric waveguide theory, optical fiber characteristics, integrated optic circuits, coupled-mode theory, optical communication systems, and photonic sensors. Prerequisite: El Eng 275 or Physics 321. (Co-listed with El Eng 326) Co-listed with: El Eng 326

332 Advanced Physics Laboratory II (Lab 3.0) A senior laboratory involving experimental design. The student must specify his objectives, assemble apparatus, take measurements, analyze the results, form conclusions, write a report, and deliver an oral presentation of the results. Prerequisite: Physics 212.

337 Atmospheric Science (Lect 3.0) An introductory survey designed to acquaint engineering and science students with the fundamentals of Atmospheric Science. Topics include atmospheric thermodynamics, synoptic scale disturbances,
atmospheric aerosols (including cloud and precipitation physics), atmospheric electricity, and radiative transfer. Prerequisites: Mc Eng 221 or 227, Ch Eng 141, or Chem 241, or Physics 311. (Co-listed with Mc Eng 337) Co-listed with: Mc Eng 337

341 Contemporary Optics (Lect 3.0) Basic optics techniques required in research or optical communication. Topics covered are basic geometric optics, commercial lens design programs, semiconductor lasers and LED’s, modulation, optical detectors, fiber optics, optical communication systems, and other topics of interest. Prerequisite: Physics 24.

345 Acoustics (Lect 3.0) Theory of oscillating mechanical systems, wave propagation, the production and transmission of sound, and ultrasonics. Prerequisites: Math 22 and Physics 24 or 25.

357 Subatomic Physics (Lect 3.0) An introduction to elementary particles. Topics include particle properties, nuclear forces, particle interactions, the Standard Model for quarks and leptons, fundamental forces in gauge field theory models, and the role of elementary particle interactions in cosmology. Prerequisite: Physics 307.

361 Introduction to Quantum Mechanics (Lect 3.0) The fundamental concepts, postulates and methods of quantum mechanics and their applications to physical systems. Topics include solutions of the Schrodinger equation for simple systems and operator methods. Prerequisites: Physics 107 or 207, 208.

367 Plasma Physics (Lect 3.0) Single-particle motions, plasmas as fluids, waves, diffusion, equilibrium, stability, kinetic theory, nonlinear effects Prerequisites: Math 204 and Physics 107 or 207 or Nu Eng 203.

371 Quantum Electronics (Lect 3.0) The generation of coherent radiation by lasers and the interaction of laser radiation with matter. Topics include stimulated emission, population inversion, optical cavities, optical gain, properties of laser media and other applications. Prerequisite: Physics 107 or 207.

377 Principles of Engineering Materials (Lect 3.0) Examination of engineering materials with emphasis on selection and application of materials in industry. Particular attention is given to properties and applications of materials in extreme temperature and chemical environments. A discipline specific design project is required. (Not a technical elective for undergraduate metallurgy or ceramic majors) (Co-listed with Ae Eng 377, Ch Eng 377, Mt Eng 377, Cr Eng 377) Co-listed with: Mt Eng 377

381 Elementary Solid State Physics (Lect 3.0) An introductory study of the structure and physical Properties of crystalline solids. Included are topics in crystal structure, x-ray diffraction, crystal binding, thermal properties of solids, free electron theory and elementary energy band theory. Prerequisites: Math 204 and Physics 107 or 207.

390 Undergraduate Research (Variable) This course is designed for the undergraduate student who wishes to engage in research. It is not to be used for graduate credit nor for more than six credit hours of undergraduate credit. The subject and credit are to be arranged with the instructor.

Political Science

Political Science explores the world of politics and the principles, techniques, and institutions through which we make collective decisions and resolve group conflicts. An understanding of politics is an especially useful skill for anyone entering a technical career, because so much of modern science and technology is embroiled in political controversy.

At UMR, courses are offered in American Politics, Comparative Politics, International Relations, and Political Theory. If you wish to pursue a specialized investigation of politics, a minor in political science is available.

Faculty

Associate Professors:
Jo Barr (Emeritus), M.S., Washington University
Tsseggai Isaac, Ph.D., University of Missouri-Columbia
Michael Meagher, Ph.D., Southern Illinois University

Political Science Minor Curriculum (UMR)

The Department of History and Political Science offers a minor degree in political science which must include 15 hours divided as follows: completion of American Government (Pol Sc 90) and Theories and Issues of Political Science (Pol Sc 235), plus an approved sequence of 9 hours of 200 and 300 level courses.

Political Science Courses

090 American Government (Lect 3.0) National, state and local government in the United States with special emphasis on political behavior and the institutions that determine and execute public policy. Topics include basic structure of American government, (i.e., democracy, the Constitution, the branches of government), as well as citizenship, parties, pressure groups and American economic policy. The course views government in its relation to its people, its services and protection.

100 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable credit.

200 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.
210 Seminar (Variable) Discussion of current topics.
225 Comparative Politics (Lect 3.0) A comparative study of states, institutional structures, ideologies, political culture, political parties, interest groups and forms of government. How these social forces are organized to articulate national or parochial interests within the framework of participatory or centralized political systems will be studied. Prerequisite: Pol Sc 90 or Hist 175.
226 International Relations (Lect 3.0) A general introduction to the theoretical framework, pattern and personalities of international relations with special emphasis upon American foreign policy making. Problems of international economic development, resources, and armaments will also be examined. Prerequisite: Pol Sc 90 or Hist 175 or 176.
235 Theories and Issues of Political Science (Lect 3.0) This course will introduce the student to the fundamental concepts and phenomena of political life and to the variety of political organizations characteristic of the modern age. Prerequisite: Pol Sc 90 or Hist 175 or 176.
237 Contemporary Political Thought (Lect 3.0) A survey of Western ideas that have contributed to our contemporary understanding of the world: liberalism, conservatism, Marxism-Leninism, democratic socialism and fascism. This course will explore the impact of ideas on American politics, including the relationship between public policy and political philosophy; this will be accomplished through the study of American political institutions using an elite model of politics. Prerequisite: Hist 175 or 176 or Pol Sc 90. (Co-listed with Hist 237) Co-listed with: Hist 237
250 State and Local Politics (Lect 3.0) An examination of the political organizations, policies, and pressure at work in the sub-national level of American government. State, county, and city governments will be explored, along with the growing number of special land use boards, environmental protection commissions, etc. Prerequisite: Pol Sc 90, Hist 175 or 176.
290 American Political Parties (Lect 3.0) The origin and development of political parties in the United States, the two-party system, the functions, organizations and operation of parties. Prerequisite: Pol Sc 90.
300 Special Problems and Readings (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.
301 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.
302 Political Science Internship (Variable) Internship will involve students applying critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employee. Activities will vary depending on the student’s background and the setting. Prerequisite: Pol Sc 90 or Pol Sc 235.
310 Seminar (Variable) Discussion of current topics Prerequisite: Senior standing.
315 Public Policy Analysis (Lect 3.0) This course presents a study of public policy in the United States. Students analyze the policy process, the resulting policy choices and the impact of the choices on the American people. Prerequisite: Pol Sc 90.
316 The American Presidency (Lect 3.0) Historical development of the presidency; emphasis on the constitutional powers and limits of the office and the political contextual variables which influence presidential behavior. Prerequisite: Pol Sc 90 or Hist 176. (Co-listed with Hist 316) Co-listed with: Hist 316
325 Science, Technology, and Politics (Lect 3.0) This course will explore the interactions and influences of science and technology upon politics, and of politics upon science and technology. The social impact of technology and the potential for the democratic management or technological growth will be examined. Prerequisite: Pol Sc 90 or Hist 112 or 175 or 176.
335 U.S. Defense Policymaking (Lect 3.0) This course reviews the evolution of U.S. defense policymaking since World War II, with special emphasis upon strategic policies, weapons systems, and the political processes through which they are selected and implemented. Prerequisite: Pol Sc 90.
350 The Politics of the Third World (Lect 3.0) This course explores the processes and problems of the developing nations of the world. It examines the internal political processes of third world nations, as well as the position of the third world in international affairs. Prerequisite: Pol Sc 90 or Hist 112 or 175 or 176.
383 American Diplomatic History (Lect 3.0) The history of American foreign relations, broadly conceived, from the Revolution to the present. The first half of the course will survey American diplomatic history to 1941. The second half will analyze the major themes in U.S. foreign policy since WWII, with special emphasis on the problems of national security and the realities of power politics in the Cold War era. Prerequisites: Hist 175, 176 or Pol Sc 90. (Co-listed with Hist 383)

Pre-health Professions

The college of Arts and Science has programs of study, which prepare students for success in the professional schools of medicine, dentistry, and related areas of health. Advising of students desiring a pre-health professional background is conducted by a committee in conjunction with the student’s department advisors. Interested students may inquire with Dr. Paula Lutz, Biological Sciences Department, who chairs the Pre-Health Professions Advisory Committee.
Pre-law

The campus, particularly the College of Arts and Sciences has a variety of programs of study to prepare students for admittance to a professional school of law. Dr. Lance Williams, Department of History/Political Science, 122 Humanities/Social Sciences Building, is Pre-law advisor.

Psychology

Bachelor of Science
Bachelor of Arts

Psychology is the scientific study of mind and behavior. Psychology is both a natural science, which stresses the cognitive and physiological causes of behavior, and a social science, which is directed at understanding how human behavior is affected by cultural and social factors. As a psychology major at UMR, you will be exposed to the many diverse areas of psychology.

Perception, memory, thinking, personality, emotion, motivation, stress and adjustment, abnormal behavior, social relations, and group dynamics are among the basic areas of research in psychology. The discipline also represents the application of these basic research areas to people, their work, and their environment. Clinical, counseling, educational, industrial/organizational, and human factors psychologists are among the professional who apply basic research to the solution of human problems. Our department provides a broad education to UMR students in both the basic and applied areas of psychology.

The statistics and experimental psychology courses required of our majors prepare you to engage in undergraduate research in your junior or senior years. By collaborating with a faculty member on a research project, you will gain valuable experience for subsequent graduate studies in psychology and related fields or for employment. Supervised practica experience in applied psychological settings, such as human service agencies, is also available for qualified students.

The department offers a choice of two degrees for majors. The Bachelor of Science degree provides a solid foundation in mathematics, biological sciences, physical sciences, and computer science. The Bachelor of Arts degree provides a broad liberal arts foundation, including courses in western civilization and foreign languages. Supporting courses in the humanities and social sciences are offered in both degrees and the psychology requirements are the same in both. In addition to the traditional B.A., B.S. degrees in psychology, the department also offers specialized B.A., B.S. degrees in Psychology that prepare the student for teaching certification in Missouri.

The department also offers two minor programs. The minor in industrial/organizational psychology requires specific courses of benefit to engineering and science majors. The psychology minor allows students to select from a variety of courses tailored to their needs.

Faculty

Professors:
Frances Haemmerlie, Ph.D., Florida State University
Robert Montgomery, (Department Chair), Ph.D., Oklahoma State University

Associate Professors:
Donald Sharpsteen, Ph.D., University of Denver

Assistant Professors:
Christian End, Ph.D., Miami University
James Martin, Ph.D., Louisiana State University
Nicholas Murray, Ph.D., University of Florida

Bachelor of Arts
Psychology

Requirements for an area of concentration in psychology are as follows:
1) General Psychology, Experimental Psychology and Capstone course (either seminar or undergraduate research, 3 hours credit).
2) Three additional courses from each of the following two traditional areas of psychology:
 A) Sensation & Perception, cognitive, learning, neuroscience, developmental, abnormal, social, or personality
 B) Educational, adolescent, human-computer interaction, industrial, human factors, clinical, group dynamics, or organizational.
3) Electives from psychology to complete a requirement of 34 hours.
4) Statistics

Bachelor of Science
Psychology

1) English 20 and 60 (entering students will normally take English 20 either semester of the first year.) (6 hours)
2) A total of 33 hours in biological, physical, (chemistry, geology and geophysics, and physics), and mathematical (mathematics/statistics and computer science or Information Science & Technology) sciences, to include Stat 115, Cmp Sc 53 or 73 or IST 51 and at least one course taken in the biological and one in the physical sciences. Of the biological and physical science offering, at least one must be a laboratory course. Courses offered in the Schools of Engineering and Mines and Metallurgy may, at the discretion of the student’s major advisor, also count toward the total requirement. (33 hours)
3) 12 hours in humanities and fine arts. Foreign language courses may count toward fulfilling this requirement. Courses used to satisfy this requirement must be taken in at least two humanities areas. (12 hours)
4) 12 hours in at least two social sciences fields outside the major area. A course in Western Civilization II (Hist 112), American History to 1877 (Hist 175) or American History since 1877 (Hist 176), or American Government (Pol Sc 90) must be taken to satisfy the requirement of the state of Missouri (the
Psychology Requirements:

1) General Psychology, Experimental Psychology and Capstone course (either seminar or undergraduate research, 3 hours credit).

2) Sensation & Perception, cognitive, learning, neuroscience, developmental, abnormal, social, or personality

3) Educational, adolescent, human-computer interaction, industrial, human factors, clinical, group dynamics, or organizational.

4) Electives from psychology to complete a minimum of 130 credit hours which may include Math 2 or 4 and Math 6.

5) Basic ROTC may be elected in the freshman and sophomore years, but is not creditable toward a degree. Six credit hours of advanced ROTC may be credited toward a degree.

6) Note: The following areas identify courses from which a student may opt to develop an emphasis area. It is not required that students obtain an emphasis specialty within psychology.

7) Elective Credits: In consultation with his/her advisor, each student will elect sufficient additional courses to complete a minimum of 130 credit hours which may include Math 2 or 4 and Math 6.

8) Psychology Requirements:

A) General Psychology, Experimental Psychology and Capstone course (either seminar or undergraduate research, 3 hours credit).

B) Three additional courses from each of the following two areas of psychology:

a) Sensation & Perception, cognitive, learning, neuroscience, developmental, abnormal, social, or personality

b) Educational, adolescent, human-computer interaction, industrial, human factors, clinical, group dynamics, or organizational.

C) Electives from psychology to complete a requirement of 34 hours.

D) A cumulative grade point average of 2.0 must be earned in all course work taken in the major field. Upper class (200- and 300-level) courses completed with grades of "D" may not be included in the major field without the approval of the advisor and the chairman of the department concerned.

Emphasis Areas

Note: The following areas identify courses from which a student may opt to develop an emphasis area. It is not required that students obtain an emphasis specialty within psychology.

Human Resources/Personnel

Psych 212-Industrial Psychology 3
Psych 270-Social Psychology 3
Psych 372-Group Dynamics 3
Psych 374-Organizational Psychology 3

Human Services

Psych 208-Psych & Ed Dev Adolescent or Psych 250-Development Psych 3
Psych 262-Abnormal Psychology 3
Psych 360-Personality Theory 3
Psych 368-Clinical Psychology 3

Research Psychology

Psych 220-Psychology of Sensation & Perception or Psych 360-Personality Theory 3
Psych 240-Theories of Learning 3
Psych 270-Social Psychology 3
Psych 305-Cognitive Psychology or Psych 330-Neuroscience 3

Usability of Technology

Psych 155-Educational Psychology 3
Psych 211-Intro to Human-Comp Interac 3
Psych 311-Human Factors 3
Psych 317-Web Design* 3

Sports Psychology

Psych 220-Psych of Sensation & Perception 3
Psych 240-Theories of Learning 3
Psych 270-Social Psychology 3
Psych 376-Sports Psychology 3

*Offered jointly with IST 211-Web Design.

Bachelor of Arts or Bachelor of Science in Psychology (Preparation for Teacher Certification)

In addition to fulfilling the requirements for the Missouri certification for teaching social studies (see Education), specific courses required for a Psychology degree include Psychology 140, 240, 250, 262 or 360, and 270 and Statistics 115. Bachelor of Science students must also take a computer science course and an additional 5 hours of mathematics or science.

Psychology Minors

Option (1)
The psychology department offers a minor degree in psychology. To qualify, all students must take 15 hours of courses in psychology including Psych 50. At least nine of these hours must be at the 200-level or above.

Option (2)
The department also offers a minor degree in Industrial/Organizational psychology.

The requirements are:
- General Psychology (Psych 50)
- Industrial Psychology (Psych 212)
- Human Factors (Psych 311)
- Organizational Psychology (Psych 374)
- Social Psychology (Psych 270)

Psychology Courses

050 General Psychology (Lect 3.0) An introduction to the science of the human mind and behavior. Topics include brain structure and function, human development, learning and memory, motivation, emotion, personality and psychological health, psychological disorders and their treatment, and social cognition and human relationships.

100 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

140 Experimental Psychology (Lect 3.0 and Lab 1.0) An introduction to the content, models, and methodologies of psychological research. The student is exposed to fundamental components in conducting psychological research including the literature review, experimental design, statistical
analyses, and interpretation. Prerequisite: Psych 50, Stat 115.

154 Psychology of Personal Adjustment (Lect 3.0) Major factors related to adjustment and everyday coping: dating, parent-child relationships, death and dying, stress, and modifying one's own behavior. Prerequisite: Psych 50.

155 Educational Psychology (Lect 3.0) (Meets UMR-UMC Cooperative Teacher Education Requirement). Principles of psychology relevant to the field of education. Concepts of human growth and development; the learning process, with special emphasis on abilities and teaching-learning process; measurement and evaluation of school learning; mental health in the classroom. Observation of children will be included. Prerequisite: Psych 50. (Co-listed with Educ 102) Co-listed with: Educ 102

200 Special Problems in Psychology (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

205 Thinking and Problem Solving (Lect 3.0) Covers Psychological research on thinking and problem-solving. Focuses on the implications of research findings for improving thinking. Heuristic strategies for creative thinking, decision making, remembering, problem solving, reasoning and other cognitive processes are covered from a behavioral science perspective. Prerequisite: Psych 50.

208 Psychological & Educational Development of the Adolescent (Lect 3.0) A theoretical and empirical examination of the psychological and educational development of the adolescent. Prerequisite: Psych 50.

212 Industrial Psychology (Lect 3.0) A general survey of the field of industrial/organizational psychology including topics such as organizational entry (recruitment, selection, training), involvement and participation (motivation, performance assessment, leadership) and organizational influences on work behavior and work attitudes. Prerequisite: Psych 50.

220 Psychology of Sensation & Perception (Lect 3.0) A study of the general characteristics of the senses and the basic conditions and principles of human perception with an emphasis on auditory and visual perception. The role of sensation and perception on affectivity and motivation will be stressed. Prerequisite: Psych 50.

240 Theories of Learning (Lect 3.0) Examination of basic processes of conditioning and learning. Topics covered include classical conditioning, extinction, discrimination learning, retention and transfer of training. Prerequisite: Psych 50.

246 Motivation and Emotion (Lect 3.0) An examination of the ways in which situational, cognitive, and emotional factors influence, and are influenced by, human motivation. Motivation and emotion in social contexts will be emphasized. Prerequisite: Psych 50.

250 Developmental Psychology (Lect 3.0) An examination of changes in social, cognitive, personality and physiological processes that occur with age. Attention is focused on human development throughout the life span. Prerequisite: Psych 50.

262 Abnormal Psychology (Lect 3.0) An introductory study of various forms of personality and behavioral disorders. Consideration will be given to neurosis, psychosis, mental deficiency and other deviations, with emphasis on etiology and treatment. Prerequisite: Psych 50.

270 Social Psychology (Lect 3.0) Social basis of behavior of individuals in social stimulus situations. Prerequisite: Psych 50.

290 History of Psychology (Lect 3.0) An examination of the origin of psychology within the framework of philosophy and science. Traces the major trends, schools, and individuals from antiquity to the present. Major scientific, cultural, philosophical and personal influences in the development of psychology. Prerequisite: Psych 50.

300 Special Problems and Readings in Psychology (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

302 Internship (Variable) Internship will involve students applying critical thinking skills and discipline specific knowledge in a work setting based on a project designed by the advisor and employer. Activities will vary depending on the student’s background and the setting. Prerequisite: Senior standing. Must have completed 24 hours in major.

305 Cognitive Psychology (Lect 3.0) An examination of the basic cognitive processes and their roles in human intelligence and behavior. Topics include attention, memory, knowledge representation, problem solving, decision making, reasoning, language, and consciousness. Prerequisite: Psych 50.

310 Seminar (Variable) Prerequisite: Senior Standing.

311 Human Factors (Lect 3.0) An examination of human-machine systems and the characteristics of people that affect system performance. Topics include applied research methods, systems analysis, and the perceptual, cognitive, physical and social strengths and limitations of human beings. The focus is on user-centered design of technology, particularly in manufacturing environments. Prerequisite: Psych 50. (Co-listed with Eng Mg 311) Co-listed with: Eng Mg 311

312 Practicum in Human Services Psychology (Lab 3.0) Practicum will involve experience in a human service setting. Depending on student background and setting, activities may involve
learning psychological testing, interviewing, assessment and/or counseling skills. Prerequisite: Psych 50 and Psych 262 or 364 or 268 or 356 and instructor approval.

314 Human-Computer Interaction (Lect 3.0) Research, theory, and practice from psychology and other social science disciplines have implications for the effective design and use of computers in organizations. This course introduces students to the psychological issues in software engineering, technology in the workplace, and organizational design. Prerequisite: Psych 50.

315 Environmental Psychology (Lect 3.0) Study of the psychological effects of different environments and socially relevant problems. Topics covered include: environmental perception, attitudes toward the environment, effects of the environment in work performance, environmental stressors, crowding and the effects of urban environments on interpersonal relations. Prerequisite: Psych 50.

330 Neuroscience (Lect 3.0) The neurophysiological basis of behavior is examined. Topics covered include: the structure and function of nerves and the nervous system; psychopharmacology; sleep and biological rhythms; reproductive behavior; emotion; learning and memory; communication; and psychological disorders. Prerequisite: Psych 50.

342 Comparative Psychology (Lect 3.0) A survey of the contributions of comparative psychology, ethology, and other disciplines to the understanding of behavior. The major emphasis will be on the genetic, developmental, and social determinants of adaptive behavior patterns.

345 Evolutionary Psychology (Lect 3.0) Fundamental principles of evolution, and their applicability to human behavior and psychological processes, will be examined. The course will focus on theoretical rationales for an evolutionary approach to psychology and on looking critically at recent research in the field. Prerequisites: Psych 50 and Psych 140.

354 Psychology of the Exceptional Child (Lect 3.0) An understanding of the abilities and disabilities of children classified as exceptional, the instructional organization utilized to meet the needs of the exceptional child in the classroom, the import of educational and psychological handicaps upon these children. Guest lectures and field trips. Prerequisite: Psych 50. (Co-listed with Educ 354) Co-listed with: Educ 354

356 Behavior Modification (Lect 3.0) Theory and techniques of influencing human behavior through the use of behavior modification and behavior therapy techniques. Applications to normal and abnormal child, adolescent and adult populations will be considered as well as ethical and legal issues. Prerequisite: Psych 50.

360 Personality Theory (Lect 3.0) A comparative examination of theories of personality organization and functioning. Origins of personality; personality development and change; current developments and research in the area of personality. Prerequisite: Psych 50.

364 Theory and Practice of Psychological Testing (Lect 3.0) Theoretical and statistical basis of psychological testing and measurement; characteristics of well-known statistical tests of intelligence, aptitude, interest, academic proficiency, and personality; use of tests and test batteries for prediction of criteria. Prerequisite: Psych 50.

368 Clinical Psychology (Lect 3.0) Comprehensive survey of the field of clinical psychology. Course will cover a variety of assessment and treatment procedures relevant to psychology and other professionals who treat human adjustment problems; techniques based on experimental outcome research and psychological testing will be emphasized. Prerequisites: Psych 50 and Psych 262.

370 Advanced Social Psychology (Lect 3.0) An advanced study of the behavior of individuals in interaction within groups. Consideration will also be given to the experimental literature dealing with the formal properties of groups, conformity and deviation, intergroup relations, and attitude formation and attitude change. Prerequisite: Psych 270.

372 Group Dynamics (Lect 3.0) Theories of group process. Group structure, functions, interaction, power, norms, and communication. Correlates of cohesiveness and problem solving will be investigated. Prerequisite: Psych 50.

374 Organizational Psychology (Lect 3.0) This course seeks to comprehend and predict human behavior in organizational settings through the scientific study of individual processes, group processes, and organizational structure and function. Prerequisite: Psych 50.

380 Cross-Cultural Psychology (Lect 3.0) Providing a cross-cultural perspective is an essential element of current curricula in psychology. Students need an understanding of how self-concepts, cognitive abilities and social relations are affected by cultural factors. Prerequisites: Psych 50 and Psych 155 or Psych 270.

390 Undergraduate Research (Variable) Designed for the undergraduate student who wishes to engage in research. Not for graduate credit. Not more than six credit hours allowed for graduation credit. Subject and credit to be arranged with the instructor.

Russian Courses

001 Elementary Russian I (Lect 4.0) Introduction to reading, conversation, and grammar. Laboratory required (one extra hour per week). Prerequisite: Entrance requirements.

002 Elementary Russian II (Lect 4.0) Continuation of Russian I. Prerequisite: Russ 1.
Sociology/Anthropology

Sociology is the study of interpersonal relationships. The sociologist seeks an understanding of the development and functioning of human society. Anthropology is the study of human cultures. In your sociology studies, you will take courses which deal with such subjects as the social bases of poverty, race conflict, culture change, urban-rural differences in values and attitudes, population growth, ethnic pride and nationality, community disorganization, family instability, social conflict in schools, changes in work expectations, and deviant behavior.

In your cultural anthropology studies, you will be concerned with the similarities and differences among human societies and with the documentation and understanding of sociocultural variation. You will formulate scientifically valid generalizations relating to the nature of individuals and society based on the application of a comparative (cross-cultural) and a holistic (totalistic) perspective.

Sociology Minor Curriculum

To qualify for a minor degree in sociology, all students must take 15 hours of course work in sociology/anthropology to be chosen in compliance with the following stipulations: one three-hour introductory survey course (either Sociology 81, General Sociology; or Sociology 85, Cultural Anthropology) plus at least 12 hours of courses at the 100-level and above.

Sociology Courses

081 General Sociology (Lect 3.0) Broad, general introduction to sociology, the purpose of which is to acquaint the student with what sociology is, what sociologists do and why; to familiarize the student with the outlines of the history of sociology, the concepts and tools of discipline, its investigatory procedures, theoretical position, subject matter, and aims and achievement.

085 Cultural Anthropology (Lect 3.0) Broad, general introduction to cultural anthropology, the purpose of which is to acquaint the student with what anthropology is, what anthropologists do and why; to familiarize the student with the outlines of the history of anthropology, the concepts and tools of the discipline, its investigatory procedures, theoretical positions, subject matter, and aims and achievements.

100 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

105 Social Organization (Lect 3.0) Analysis of the concept of social organization; structure and functioning of social institutions and the processes of integration and social change; some focus on how people organize themselves in different
societies, from simple hunting-gathering levels of adaptation to modern industrial states. Prerequisite: Sociol 81 or 85.

121 Human Ecology (Lect 3.0) Study of influence of social and physical environment on a group's organization and operation. Prerequisite: Sociol 81 or 85.

160 Hispanic Culture (Lect 3.0) An interdisciplinary course that examines the culture of the Hispanic world (with an emphasis on Latin America). The presentation is in Spanish, and social science concepts and methods are stressed. Topics include: bilingualism, multiculturalism, economic development, and political stability. Prerequisite: Span 80.

200 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

210 Seminar (Variable) Discussion of current topics.

218 Social Change (Lect 3.0) A study of the processes involved in social change, including how to intervene in those processes or how to direct the change process. Prerequisite: Sociol 81, or 85, or 105.

220 The Community (Lect 3.0) Origins and structure of communities, their boundaries, components, and action processes. Prerequisite: Sociol 81 or 85.

225 Culture and Personality (Lect 3.0) Cross-cultural examination of the relationships among the individual, society, and culture; types of socialization; the sociocultural factors underlying personality development. Prerequisite: Sociol 81 or 85.

231 Social Stratification (Lect 3.0) Caste and class structure and its relation to other aspects of social organization, such as power and authority, access to resources, socialization, self-concept. Prerequisite: Sociol 81 or 85.

235 Industrial Sociology (Lect 3.0) The structure and function of work organizations; formal and informal lines of communication and authority; impact of industrialization on other institutions. Prerequisite: Sociol 81 or 85.

240 Sociology of Complex Organizations (Lect 3.0) The socio-political and socio-economic environment of complex organizations (e.g., private corporations, government agencies, and voluntary associations), their formal and informal structures, their consequences for the individual and society. Prerequisite: Sociol 81 or 85.

245 Ethnicity and Nationality (Lect 3.0) Ethnic and national group identity and interrelationships within the context of prevailing ideology. Prerequisite: Sociol 81 or 85.

251 Urban and Rural Sociology (Lect 3.0) Study of urban society, including occupational structure, class and status systems, racial and cultural relations, and mass transportation and communication; and of rural society, with an emphasis on the adaptations of rural people to a primarily urban mass society. Prerequisite: Sociol 81 or 85.

260 Deviant Behavior (Lect 3.0) Examination of various types of deviant behavior and their relationship to the social order. Prerequisite: Sociol 81 or 85.

265 Sociology of Education (Lect 3.0) The school as a social system and its inter-relationship with the larger society. Meets requirement of UMC "Comparative Foundations of Education" (B-352). Prerequisite: Sociol 81 or 85.

281 Family and Marriage (Lect 3.0) Variations, organization, and operation of family systems. Prerequisite: Sociol 81 or 85.

300 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

310 Seminar (Variable) Discussion of current topics. Prerequisite: Senior standing.

321 Social Theory (Lect 2.0 and Lab 1.0) Examination of propositions about society and how and why it functions. Prerequisite: Any 200-level Sociol course.

342 Social Investigation (Lect 3.0) Research methods and their applications in the analysis of society. Prerequisite: Any 200-level Sociol course.

380 Social Organization (Lect 3.0)

383 Social Science Foreign Area Field Study (Lect 3.0) First hand empirical investigation of problems in a foreign setting. Prerequisite: Any 200-level Sociol course.

Spanish Courses

001 Elementary Spanish I (Lect 4.0) Introduction to Spanish. Oral drills, readings, grammar and composition. Laboratory required (one extra hour per week). Prerequisite: Entrance requirements.

002 Elementary Spanish II (Lect 4.0) Continuation of Spanish I. Laboratory required (one extra hour per week). Prerequisite: Span 1.

060 Hispanic Civilization (Lect 3.0) General survey of Spanish culture and life with an emphasis on the 20th century. (Taught in English). Prerequisite: Entrance Requirements.

080 Readings and Composition (Lect 4.0) Intermediate readings in Spanish. Prerequisite: Span 2.

090 Scientific Spanish (Lect 3.0) Reading representative writings in sciences and technology. Emphasis on scientific literature in the student's major and minor fields. Prerequisite: Span 2.

100 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.
101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

110 Basic Spanish Conversation (Lect 2.0) Spanish conversation and oral practice. Prerequisite: Span 2.

160 Hispanic Culture (Lect 3.0) An interdisciplinary course that examines the culture of the Hispanic world (with an emphasis on Latin America). The presentation is in Spanish, and social science concepts and methods are stressed. Topics include: bilingualism, multiculturalism, economic development, and political stability. Prerequisite: Span 80.

170 Masterpieces of Hispanic Literature (Lect 3.0) A study of the major works in Spanish and Spanish American literature. Prerequisite: Span 80.

180 Intermediate Spanish Composition (Lect 3.0) Practice in writing Spanish: compositions and written translations. Prerequisite: Span 80.

200 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

277 Literature in Translation (Spanish) (Lect 3.0) Representative Spanish American works in English translation, with emphasis on the contemporary novel. Prerequisite: English 20.

300 Special Problems (Variable) Problems or readings on specific subjects of projects in the department. Consent of instructor required.

301 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

310 Seminar (Variable) Discussion of current topics.

311 Advanced Spanish Conversation (Lect 2.0) Advanced Spanish conversation and oral practice. Prerequisite: Span 110.

370 Survey of Spanish Literature (Lect 3.0) Survey of Spanish literature from Medieval to Modern Times, including the Renaissance, Siglo De Oro, Enlightenment, Romanticism, and the 20th century. Prerequisite: Span 170 or native ability.

371 Survey of Spanish American Literature (Lect 3.0) Survey of Spanish American literature from the Conquest to Modern Times, including the Chronicles, Renaissance, Baroque, Neo-classicism, Romanticism, the Modernistic Movement, and the 20th century. Prerequisite: Span 170 or native ability.

378 Novela Proletaria (Lect 3.0) A study of the fiction written during the Great Depression in Latin America, examining principally problems in the exploitation of oil, the mining of minerals, and of urban poverty. Prerequisite: Span 170.

379 Literature of Hispanic Nations (Lect 3.0) The study of the contemporary literature of Hispanic nations: Chile, Argentina, Mexico, Venezuela, Colombia, Peru or Spain.

Speech and Media Studies

Communication is a fundamental part of every human interaction, whether among friends, in the workplace, or as the citizens and leaders of our communities. Because it is so common in our daily lives, too often we forget that a solid understanding of how communication works is essential to the process of becoming an effective member of our work and public communities. Without competence in communicating ideas to others, our ideas—however brilliant—cannot be understood by others and so are wasted. Courses in Speech and Media Studies will help students develop the necessary theoretical understanding, critical and analytical insight, and practical expertise to be the effective communicators and leaders of the future.

The Speech & Media Studies program offers two minor programs of study: a minor in Communication Studies and a Leadership Communication minor. Elective courses, including interpersonal, small group, business and professional, intercultural, mass, and leadership communication complete the communication studies minor and are also incorporated into the leadership minor. Additional courses may be selected in consultation with the minor advisor and substituted for the elective hours when the student's particular needs and interests in communication warrant.

Faculty
Professor:
W. Lance Haynes, (Director) Ph.D., University of Minnesota
Assistant Professor:
David C. Williams, Ph.D., University of Kansas
Lecturer:
Wilma Turner, M.A., Baylor University

Minor Curriculum in Communications

The Speech and Media Studies program of the department of Philosophy and Liberal Arts offers two minor degrees in communication: Communication Studies and Leadership Communication. Each minor requires fifteen hours of study.

I. Communication Studies
Core Requirements (3 hours):
- SP&M S 181-Communication Theory

Elective requirements, select 4 (12 hours):
- SP&M S 85-Principles of Speech
- SP&M S 100-Special Problems
- SP&M S 101-Special Topics
- SP&M S 150-Interpersonal Communication
II. Leadership Communication

Core Requirement (3 hours)
- SP&M S 181 - Communication Theory

Additional Requirements (12 hours):
- SP&M S 150 - Interpersonal Communication or
- SP&M S 235 - Intercultural Communication
- SP&M S 255 - Discussion & Conference Methods
- SP&M S 265 - Leadership Communication
- SP&M S 270 - Leadership Practices

Speech and Media Studies Courses

085 Principles of Speech (Lect 3.0) A study of the arts of expression, oral communication, and listening (theory and practice); effective interaction of speech, speaker, listener, and occasion. Prerequisite: Entrance requirements.

100 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

101 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

121 Design and Production for the Print Media (Lect 3.0) Study of the development of elements of editing and typography. Examines development of editorial principles and styles to understand how editors reach decisions about what is printed and to help achieve a critical sense in dealing with the print media. Prerequisite: English 1 or 60 or Speech 181.

181 Communication Theory (Lect 3.0) Deals with the concerns addressed by communication theory: language, cybernetics, visual arts, general semantics, information theory, and electronic communications. The university’s fairly extensive media and communications resources are made use of, both for their content and for a study of the impact of their forms upon the transfer of information.

200 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

201 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

210 Seminar (Variable) Discussion of current topics.

221 The Study of Photography (Lect 3.0) An introduction to photographic communication. Includes a study of basic camera techniques, black, and white film and print processing, the use of 35mm and larger format cameras, and photographic history and aesthetics.

235 Intercultural Communication (Lect 3.0) Examines the range of human differences as variables in the communication process; emphasis on broadening individual perspectives regarding the range of human experience. Particularly useful for students who will work and live in environments unlike those previously encountered. Prerequisite: Sp&M S 181.

250 Interpersonal Communication (Lect 3.0) Explores the theoretical and practical dimensions of human communication in significant one-on-one relationships. Emphasis on theoretical approaches to identify and achieve particular outcomes desired in professional and personal interactions. Prerequisite: Sp&M S 181.

255 Discussion and Conference Methods (Lect 3.0) Explores the theoretical and practical dimensions of human communication in task-oriented small groups with emphasis on producing desired outcomes. Particularly useful for students who wish to improve their ability to work in small group environments. Prerequisite: Sp&M S 181.

265 Leadership Communication (Lect 3.0) This course explores various approaches to leadership with emphasis on the communication theories and behaviors associated with leadership in modern corporate and public contexts. Prerequisites: Sp&M S 150, 181, or permission of instructor.

270 Leadership Practices (Lect 3.0) This course provides opportunities for students to do qualitative and quantitative research in leadership, small group, and organizational communication associated with activities in the Oral Communication Center. Prerequisite: Sp&M S 265 or permission of instructor.

275 Foundations of Video Communication (Lect 3.0) Examines the historical, social, and psychological impact of television as a base from which the course explores and applies critical and creative theories of effective television communication. Includes limited video production experience. Prerequisite: Sp&M S 181 or consent of instructor.

283 Business and Professional Communication (Lect 3.0) Examines culture and communication in the workplace from theoretical and practical perspectives. Topics include: group communication, interviewing, networking, planning and presenting material to technical and general audiences, interpersonal communication and leadership in the workplace context. Prerequisites: Sp&M S 150, 181 or permission of instructor.

300 Special Problems (Variable) Problems or readings on specific subjects or projects in the department. Consent of instructor required.

301 Special Topics (Variable) This course is designed to give the department an opportunity to test a new course. Variable title.

310 Seminar (Variable) Discussion of current topics. Prerequisite: Senior standing.

390 Undergraduate Research (Variable) Designed for the undergraduate student who wishes to
engage in research. Not for graduate credit. Not
more than six (6) credit hours allowed for gradu-
ation credit. Subject and credit to be arranged
with the instructor. Prerequisite: Consent of
instructor.

Statistics
(See Mathematics and Statistics)

Statistics Courses

101 Special Topics (Variable) This course is
designed to give the department an opportunity
to test a new course. Variable title.

111 Business and Economic Statistics I (Lect 3.0)
This is an introductory course in business and
economic statistics. Our main objective is to
familiarize the student with elementary statistical
concepts within the context of numerous applica-
tions in Business and Economics. We will highlight
the primary use of statistics, that is, to glean
information from an available sample regarding the
underlying population. Prerequisite: Math 2
or Math 4. (Co-listed with Econ 111)

115 Statistics for the Social Sciences I (Lect 3.0)
A survey course in statistics for the social and
behavioral sciences. Main emphasis is on inductive
rather than traditional descriptive statistics.
Attention given to the design of experiments,
sampling procedures, basic probability distribu-
tions, tests of significance, linear regression and
correlation, and analysis of variance. Not advised
for engineering or science curricula.

116 Statistics for the Social Sciences II (Lect
3.0) A course on statistical methodology for
the social and behavioral sciences. Regression, analy-
sis of variance, forecasting, and use of statistical
computer packages. Prerequisite: Stat 115.

201 Special Topics (Variable) This course is
designed to give the department an opportunity
to test a new course. Variable title.

211 Statistical Tools for Decision Making (Lect
2.0 and Lab 1.0) An introduction to statistical
techniques commonly used in management deci-
sion making. Topics include statistical inference
of population parameters, linear regression, basics
of experimental design and analysis, analysis of
categorical data, and the use of statistical soft-
ware. Credit will be given for only one of Stat
211, 213, 215 or 217. Prerequisite: Math 8

213 Applied Engineering Statistics (Lect 3.0) An
introduction to applied statistical methods in
engineering dealing with basic probability, esti-
mation, tests of hypotheses, regression, design
of experiments and control charts. Statistical
computer packages will be used in connection
with some of the material studies. Credit will be
given for only one of Stat 211, 213, 215 or 217.
Prerequisite: Math 21.

215 Engineering Statistics (Lect 3.0) An intro-
duction to statistical methods in engineering and the
physical sciences dealing with basic probability,
distribution theory, confidence intervals, signifi-
cance tests, and sampling. Credit will be given
for only one of Stat 211, 213, 215 or 217. Prerequisite: Math 21.

217 Introduction to Probability and Statistics
(Lect 3.0) An introduction to probability, distribu-
tion theory, statistical inference, and their appli-
cation to physical and engineering sciences.
Topics covered will include probability laws, prob-
bability distributions, joint distribution, functions
of random variables, system reliability, point and
interval estimation, testing hypotheses, regres-
sion analysis. Credit will be given for only one of
Stat 211, 213, 215 or 217. Prerequisite: Math 21.

300 Special Problems (Variable) Problems or read-
ings on specific subjects or projects in the depart-
ment. Consent of instructor required.

301 Special Topics (Variable) This course is
designed to give the department an opportunity
to test a new course. Variable title.

305 Making Sense of Data for Elementary School
Teachers (Lect 3.0) An activity based course
that is intended to provide elementary school
teachers with the skills necessary to implement
the Probability & Statistics strand of the American
Statistical Association of the National Council
of Teachers of Mathematics (NCTM) joint.
Prerequisite: Graduate Standing.

306 Making Sense of Data for Middle School
Teachers (Lect 3.0) An activity based course
that is intended to provide middle school teach-
ers with the skills necessary to implement the
Probability & Statistics strand of the American
Statistical Association of the National Council
of Teachers of Mathematics (NCTM) joint.

307 Making Sense of Data for High School
Teachers (Lect 3.0) An activity based course
that is intended to provide high school teachers
with the skills necessary to implement the
Probability & Statistics strand of the American
Statistical Association of the National Council
of Teachers of Mathematics (NCTM) joint.

320 Statistical Methods (Lect 3.0) A continuation
of Stat 215 with emphasis on statistical methods.
Topics would include further work on regression
analysis, control charts, acceptance sampling,
nonparametric statistics, goodness of fit tests,
reliability and life-testing, analysis of experimen-
tal designs. Prerequisite: Stat 215.

343 Probability and Statistics (Lect 3.0) In-
troduction to the theory of probability and its
applications, sample spaces, random variables,
binomial, Poisson, normal distributions, derived
distributions, and moment generating functions.
Prerequisite: Math 22.

344 Mathematical Statistics (Lect 3.0) A continu-
ation of Stat 343 with introduction to the theories
of point estimation, hypothesis testing, and inter-
val estimation. Includes sufficiency, completeness, likelihood and how they apply to the exponential family. Prerequisite: Stat 343.

346 Regression Analysis (Lect 3.0) Simple linear regression, multiple regression, regression diagnostics, multicollinearity, measures of influence and leverage, model selection techniques, polynomial models, regression with autocorrelated errors, introduction to non-linear regression. Prerequisites: Math 22 and one of Stat 211, 213, 215, 217, or 343. (Co-listed with Cmp Sc 366) Co-listed with: Cmp Sc 366

353 Statistical Data Analysis (Lect 3.0) Introduction to methods for analyzing statistical data from experiments and surveys. Analysis of variance, correlation, introduction to regression techniques, contingency tables, non-parametric techniques and introduction to modern statistical software. Prerequisites: Math 22 and one of Stat 115, 213, 215 and 217.

390 Undergraduate Research (Variable) This course is designed for the undergraduate student who wishes to engage in research. It is not to be used for graduate credit nor for more than six credit hours of undergraduate credit. The subject and credit are to be arranged with the instructor. Prerequisite: Consent of instructor.

Theatre

The UMR Theatre Program offers courses in theatre production and performance, theatre appreciation, and special projects. The University Theatre presents a major production of a play, operetta, or musical each semester. You are encouraged to participate as a performer, technician or production assistant.

Recent productions have included, The Imaginary Invalid by Moliere, A Funny Thing Happened on the Way to the Forum by Larry Gelbart, The Odd Couple by Neil Simon, Joseph and the Amazing Technicolor Dreamcoat by Webber and Rice, and My Fair Lady by Lerner & Loewe.

Faculty

Instructor:
John Woodfin, M.A., Southwest Mo. State University

Theatre Courses

042 Stage Productions, Performers (Lab 1.0) Performers; participants selected by audition. A skills course, not a humanities elective. Prerequisite: Participants selected by audition.

043 Stage Productions, Technicians (Lab 1.0) Technicians and production assistants; participants selected by interview. A skills course, not a humanities elective.

090 Theatre Appreciation (Lect 3.0) A survey of technical and artistic developments in theatre in Western Civilization.